Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125027, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197209

RESUMEN

A green, simple and sensitive spectrofluorometric approach for determining vonoprazan fumarate in bulk and pharmaceutical dosage form by turning off the fluorescence of sodium salicylate is developed. The addition of vonoprazan fumarate reduced linearly the fluorescence intensity of 0.4 mM sodium salicylate at λem 408 nm and at λex 330 nm. The approach was found to be linear in the 50.0-3000.0 ng/mL range. The limits of detection and quantification were 10.97 and 33.23 ng/mL, respectively. The presented method proved its suitability in determination of vonoprazan fumarate in its pure and pharmaceutical dosage form. This method employs water as the exclusive solvent and utilizes safe reagents, evaluated using the Analytical Eco Scale, Green Analytical Procedure Index (GAPI), and carbon footprint. In contrast, previous methods relied on toxic reagents and required extended heating times, resulting in higher environmental impact. The novel method not only enhances analytical efficiency but also aligns with green chemistry principles, offering a sustainable solution for routine pharmaceutical analysis.


Asunto(s)
Colorantes Fluorescentes , Tecnología Química Verde , Límite de Detección , Pirroles , Salicilato de Sodio , Espectrometría de Fluorescencia , Sulfonamidas , Sulfonamidas/análisis , Sulfonamidas/química , Espectrometría de Fluorescencia/métodos , Pirroles/química , Tecnología Química Verde/métodos , Colorantes Fluorescentes/química , Salicilato de Sodio/química , Salicilato de Sodio/análisis , Reproducibilidad de los Resultados
2.
Anal Bioanal Chem ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289201

RESUMEN

Upadacitinib (UPA) is a selective and reversible oral Janus kinase (JAK) 1 inhibitor and is of great importance in treating inflammatory bowel disease (Zheng et al., Int Immunopharmacol 126:111229, 2024; Foy et al., JAAD Case Rep 42:20-22, 2023). Although there are limitations to the effectiveness of UPA, it has received positive responses in clinical trials and is approved for the treatment of atopy dermatitis (AD) (Li et al., Int Immunopharmacol 125:111193, 2023). In this study, a nanoparticle-doped molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for sensitive and selective detection of UPA. The developed sensor was designed as a thin film layer using the photopolymerization method on the surface of the prepared nanoparticle-doped polymerization solution glassy carbon electrode (GCE). Various nanoparticles, such as multi-walled carbon nanotube, titanium dioxide, oxide, and zinc oxide (ZnO) nanoparticles, were the most suitable for UPA. Surface characterization of the developed sensor was done by scanning electron microscopy (SEM), and electrochemical characterization was done by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The quantitative analysis of UPA was performed in 5.0 mM [Fe (CN)6]3-/4- solution using the differential pulse voltammetry (DPV) technique. Under optimum conditions, the calibration range was between 0.1 and 1 pM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated as 0.005 pM and 0.017 pM, respectively. The sensor's accuracy was proven by performing a recovery study in serum. The sensor's selectivity was also evaluated using common interfering substances such as KNO3, CaCl2, Na2SO4, uric acid, ascorbic acid, dopamine, and paracetamol. According to the results obtained, the performance of the designed sensor was found to be quite sensitive and selective in determining UPA. The developed UPA-ZnO/3-APBA@MIP-GCE sensor showed high sensitivity and selectivity towards UPA. In addition, the selectivity, the most important feature of the MIP-based sensor, was confirmed by imprinting factor (IF) calculations using tofacitinib (TOF) and ruxolitinib (RUX). The sensor's unique selectivity is demonstrated by its successful performance even in the presence of UPA impurities.

3.
Crit Rev Anal Chem ; : 1-27, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155524

RESUMEN

Psychoactive substances pose significant challenges and dangers to society due to their impact on perception, mood, and behavior, leading to health and life disturbances. The consumption of these substances is largely influenced by their legal status, cultural norms, and religious beliefs. Continuous development and chemical modifications of psychoactive substances complicate their control, detection, and determination in the human body. This paper addresses the terminological distinctions between psychoactive and psychotropic substances and drugs. It provides a comprehensive review of analytical methods used to identify and quantify 25 psychoactive substances in various biological matrices, including blood, urine, saliva, hair, and nails. The analysis categorizes these substances into four primary groups: stimulants, neuroleptics, depressants, and hallucinogens. The study specifically focuses on chromatographic and spectrophotometric methods, as well as other novel analytical techniques. Methodology includes a review of scientific articles containing validation studies of these methods and innovative approaches to psychoactive substance determination. Articles were sourced from the PubMed database, with most research originating from the twenty first century. The paper discusses the limits of detection and quantitation for each method, along with current trends and challenges in the analytical determination of evolving psychoactive substances.

4.
ADMET DMPK ; 12(3): 529-542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091902

RESUMEN

Background and purpose: Erectile dysfunction is a common issue among adult males involving difficulty in maintaining an erection, and it is often treated with fast-acting, low-side-effect drugs like avanafil (AVN), among other phosphodiesterase-5 inhibitors. Hence, developing fast, simple, and sensitive methods to detect AVN is crucial. Experimental approach: This study conducts an electroanalytical inquiry and provides a new voltammetric method for accurately analyzing AVN utilizing a boron-doped diamond (BDD) electrode without any modifications. Key results: In the Britton-Robinson buffer (BR, 0.04 mol L-1, pH 4.0), cyclic voltammetry showed a clearly defined and irreversible anodic peak at around +1.44 V relative to Ag/AgCl. The pH of the solution was shown to have an impact on the voltammetric signals of the oxidation peaks. A good linear response for AVN quantification was achieved using square-wave voltammetry. This was done in a 0.04 mol L-1 BR (pH 4.0) solution at a potential of +1.33 V (vs. Ag/AgCl). The method exhibited a wide dynamic range of 0.5 to 30.0 µg mL-1 (1.0 to 62 µmol L-1) and a low limit of detection of 0.14 µg mL-1 (0.29 µmol L-1). The method proposed demonstrated suitability for determining AVN content in pharmaceutical formulations. The accuracy of the approach was demonstrated by comparing the results obtained using the developed method with those achieved using the UV-Vis spectrometry method. Conclusion: Our method simplifies the analytical process by eliminating the need for electrode modification, reducing both time and resource requirements while enhancing overall feasibility.

5.
Drug Metab Dispos ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168526

RESUMEN

Exogenous substances, including drugs and chemicals, can transfer into human seminal fluid and influence male fertility and reproduction. In addition, substances relevant in the context of sports drug testing programs, can be transferred into the urine of a female athlete (after unprotected sexual intercourse) and trigger a so-called Adverse Analytical Finding. Here, the question arises as to whether it is possible to distinguish analytically between intentional doping offences and unintentional contamination of urine by seminal fluid. To this end, 480 seminal fluids from non-athletes were analysed to identify concentration ranges and metabolite profiles of therapeutic drugs that are also classified as doping agents. Therefore, a screening procedure was developed using liquid chromatography connected to a triple quadrupole mass spectrometer, and suspect samples (i.e. samples indicating the presence of relevant compounds) were further subjected to liquid chromatography-high-resolution accurate mass (tandem) mass spectrometry. The screening method yielded 90 findings (including aromatase inhibitors, selective estrogen receptor modulators, diuretics, stimulants, glucocorticoids, beta-blockers, antidepressants, and the non-approved PPARδ agonist GW1516) in a total of 81 samples, with 91 % of these suspected cases being verified by the confirmation method. Besides the intact drug, phase-I and -II metabolites were also occasionally observed in the seminal fluid. This study demonstrated that various drugs including those categorized as doping agents partition into seminal fluid. Monitoring substances and metabolites may contribute to a better understanding of the distribution and metabolism of exogenous substances in seminal fluid that may be responsible for the impairment of male fertility. Significance Statement This study demonstrates that doping agents as well as clinically relevant substances are transferred/eliminated into seminal fluid to a substantial extent and that knowledge about drug levels (and potential consequences for the male fertility and female exposure) is limited. The herein generated new dataset provides new insights into an important and yet little explored area of drug deposition and elimination, and hereby a basis for the assessment of contamination cases by seminal fluid in sports drug testing.

6.
Talanta ; 278: 126414, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950500

RESUMEN

There is an ongoing effort in the US illicit drug market to make new psychoactive compounds more potent and addictive. Due to continuous chemical modifications, many fentanyl analogs are developed and mixed with more traditional illicit drugs, such as cocaine and heroin. Detecting fentanyl and fentanyl analogs in these illicit drug mixtures has become more crucial because of the increased potency and associated health risks. Most confirmatory procedures require time-consuming and expensive, highly sophisticated laboratory equipment and experimental procedures, which can delay critical information that might save a victim or find a suspect. In this study, we propose miniaturizing and accelerating this process by combining surface-enhanced Raman spectroscopy (SERS) analysis and paper spray mass spectrometry (PS-MS). For this aim, dual-purposed paper substrates were developed through soaking in Au/Ag nanostars suspensions. These novel, in-house prepared paper SERS substrates showed stability for up to four weeks with and without the presence of drug compounds. Fentanyl analogs with similar SERS spectra were differentiated by coupling with PS-MS. The limit of detection (LOD) for fentanyl on the paper substrates is 34 µg/mL and 0.32 µg/mL for SERS and PS-MS, respectively. Fentanyl and fentanyl analogs show selective SERS enhancement that helped to detect trace amounts of these opioids in heroin and cocaine street samples. In short, we propose the combination of SERS/PS-MS by using modified paper substrates to develop cost-effective, sensitive, rapid, portable, reliable, and reproducible methods to detect illicit drugs, especially trace amounts of fentanyl and fentanyl analogs in illicit drug mixtures. The combination of these two category A techniques allows for the identification of illicit drugs according to the SWGDRUG guidelines.


Asunto(s)
Fentanilo , Drogas Ilícitas , Espectrometría de Masas , Papel , Espectrometría Raman , Espectrometría Raman/métodos , Drogas Ilícitas/análisis , Fentanilo/análisis , Fentanilo/análogos & derivados , Espectrometría de Masas/métodos , Oro/química , Plata/química , Detección de Abuso de Sustancias/métodos , Límite de Detección , Nanopartículas del Metal/química , Humanos , Propiedades de Superficie
7.
J Forensic Sci ; 69(5): 1718-1729, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38939982

RESUMEN

A quantitative gas chromatography mass spectrometry (GC/MS) method was developed for delta-9-tetrahydrocannabinol (delta-9-THC), delta-8-tetrahydrocannabinol (delta-8-THC), tetrahydrocannabinolic acid (THCA), and cannabidiol (CBD) in matrices including plant material, liquids and oils, waxes, edibles, and bath and body products. Samples were prepared by homogenization, extraction of the cannabinoids into solvent, liquid/liquid extraction, and derivatization. The GC/MS method was validated from 0.15% to 5.00% (weight basis) to encompass the 0.3% legal distinction between hemp and marijuana. Validation was performed assessing imprecision/bias, calibration model, recovery, interferences, limit of detection, matrix matching, carryover, accuracy, and an assessment of CBD conversion to delta-9-THC. The calibration curves were quadratic weighted 1/x with r2 > 0.990. The method had a detection limit of 0.075% in plant material for each analyte. Analyte recovery was greater than 70% in plant material. Carryover was not observed up to concentrations equivalent to 100% analyte, and no forensically significant conversion of CBD to delta-9-THC was observed. One cannabinoid isomer, 9(R)-delta-7-tetrahydrocannabinol (9(R)-delta-7-THC), was determined to interfere with the quantitation of delta-9-THC, but could be differentiated based on mass spectrum. The method was determined to be suitable for quantitation of delta-9-THC, delta-8-THC, delta-9-THCA, and CBD and was able to differentiate hemp samples from marijuana samples.


Asunto(s)
Cannabidiol , Dronabinol , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Dronabinol/análisis , Dronabinol/análogos & derivados , Humanos , Cannabidiol/análisis , Cannabidiol/química , Cannabis/química , Toxicología Forense/métodos , Reproducibilidad de los Resultados , Extracción Líquido-Líquido
8.
Biosensors (Basel) ; 14(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38920575

RESUMEN

The drug detection technology plays a pivotal role in the domains of pharmaceutical regulation and law enforcement. In this study, we introduce a method that combines thermal desorption corona discharge ionization (TD-CDI) with mass spectrometry for efficient drug detection. The TD-CDI module, characterized by its compact and simple design, enables the separation of analytes within seconds and real-time presentation of one or two analyte peaks on the mass spectrum most of the time, which reduces matrix interference and improves detection performance. Through experimental investigation, we studied the characteristics of TD-CDI for analyte separation and detection, even with the same mass number, and optimized the TD-CDI approach. TD-CDI-MS was employed for the rapid detection of drugs in various traditional medicine, food products, and human samples. Additionally, by utilizing TD-CDI for segmented hair direct analysis, it becomes possible to trace the drug usage cycle of individuals. This underscores the feasibility of the proposed analytical method within the realm of drug detection.


Asunto(s)
Espectrometría de Masas , Humanos , Espectrometría de Masas/métodos , Preparaciones Farmacéuticas/análisis , Cabello/química
9.
ADMET DMPK ; 12(1): 151-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560716

RESUMEN

Background and purpose: Diclofenac (DCF) is a non-steroidal anti-inflammatory drug possessing analgesic and antipyretic properties. It is used for the treatment of rheumatoid arthritis pain, osteoarthritis, and acute muscle pain conditions and can be administrated orally, topically or intravenously. Because of its widespread use, hydrophilicity, stability and poor degradation (bioaccumulation in the food chain), DCF is an emerging chemical contaminant that can cause adverse effects in the ecosystems. Taking into account the consumption of DCF in pharmaceutical formulations and its negative impact on the environment, the development of new sensitive, selective, cheap, fast, and online capable analytical devices is needed for on-site applications. Experimental approach: This brief review attempts to cover the recent developments related to the use of nanomaterials as catalysts for electrochemical determination of DCF in pharmaceutical formulations, biological fluids and environmental samples. Key results: The article aims to prove how electrochemical sensors represent reliable alternatives to conventional methods for DCF analysis. Conclusion: The manuscript highlights the progress in the development of electrochemical sensors for DCF detection. We have analyzed numerous recent papers (mainly since 2019) on sensors developed for the quantitative determination of DCF, indicating the limit of detection, linear range, stability, reproducibility, and analytical applications. Current challenges related to the sensor design and future perspectives are outlined.

10.
Crit Rev Anal Chem ; : 1-17, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630637

RESUMEN

Ovarian cancer, which affects the female reproductive organs, is one of the most common types of cancer. Since this type of cancer has a high mortality rate from gynaecological cancers, the scientific community shows great interest in studies on its treatment. Chemotherapy, radiotherapy, and surgical treatment methods are used in its treatment. In the absence of targeted treatments in these treatment methods, side effects occur in patients, and patients show resistance to the drug. In addition, the underlying causes of ovarian cancer are still not fully known. The scientific world thinks that genetic factors, environmental conditions, and consumed foods may cause this cancer. The most important factor in the treatment of ovarian cancer is early diagnosis. Therefore, the drugs used in the treatment of ovarian cancer are platinum-based anticancer drugs. In addition to these drugs, the most preferred treatment method recently is targeted treatment approaches using poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. In this review, studies on the sensitive analysis of the treatment methods of these new-generation drugs used in the treatment of ovarian cancer have been comprehensively examined. In addition, the basic features, structural aspects, and biological data of analytical methods used in treatments with new-generation drugs are explained. Analytical studies carried out in the literature in recent years aim to show future developments in how these new-generation drugs are used today and to guide future studies by comprehensively examining and explaining the structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies. Finally, in this study, the methods used in the analysis of drugs used in the treatment of ovarian cancer and the studies conducted between 2015 and 2023 were discussed in detail.

11.
Sci Rep ; 14(1): 8099, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582770

RESUMEN

The simultaneous identification of drugs has considerable difficulties due to the intricate interplay of analytes and the interference present in biological matrices. In this study, we introduce an innovative electrochemical sensor that overcomes these hurdles, enabling the precise and simultaneous determination of morphine (MOR), methadone (MET), and uric acid (UA) in urine samples. The sensor harnesses the strategically adapted carbon nanotubes (CNT) modified with graphitic carbon nitride (g-C3N4) nanosheets to ensure exceptional precision and sensitivity for the targeted analytes. Through systematic optimization of pivotal parameters, we attained accurate and quantitative measurements of the analytes within intricate matrices employing the fast Fourier transform (FFT) voltammetry technique. The sensor's performance was validated using 17 training and 12 test solutions, employing the widely acclaimed machine learning method, partial least squares (PLS), for predictive modeling. The root mean square error of cross-validation (RMSECV) values for morphine, methadone, and uric acid were significantly low, measuring 0.1827 µM, 0.1951 µM, and 0.1584 µM, respectively, with corresponding root mean square error of prediction (RMSEP) values of 0.1925 µM, 0.2035 µM, and 0.1659 µM. These results showcased the robust resiliency and reliability of our predictive model. Our sensor's efficacy in real urine samples was demonstrated by the narrow range of relative standard deviation (RSD) values, ranging from 3.71 to 5.26%, and recovery percentages from 96 to 106%. This performance underscores the potential of the sensor for practical and clinical applications, offering precise measurements even in complex and variable biological matrices. The successful integration of g-C3N4-CNT nanocomposites and the robust PLS method has driven the evolution of sophisticated electrochemical sensors, initiating a transformative era in drug analysis.


Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Morfina , Ácido Úrico/orina , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos
12.
Talanta ; 274: 125981, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583325

RESUMEN

Mass spectrometric analysis of non-volatile salts containing samples remains challenging due to salt-induced ion suppression and contamination. This challenge is even more pronounced for a liquid chromatography-mass spectrometry analysis, where the accumulation of salts in the transmission system poses an ongoing problem. In this study, a novel thermal assisted recrystallization ionization mass spectrometry (TARI-MS) device was developed to achieve efficient on-line desalting and prolonged analysis of saline samples. The core component of this device was a heated plate positioned between the electrospray unit and the MS inlet. The desalting mechanism was demonstrated as the spontaneous separation of target molecules from salts during the "crystallization" process. After optimization, the angle between the nebulizer and the heated plate was 45°; the distance between the front end of the heated plate and the MS inlet was 2 mm; the distance between the front edge of the heated plate and the center of the sample spray projected onto the heating plate was 3 mm; the distance between the emitter of nebulizer and the heated plate was 3 mm. TARI-MS realized direct analysis of eight drugs dissolved in eight commonly used non-volatile salts solutions (up to 0.5 mol/L). The high sensitivity, repeatability, linearity, accuracy, and intra- and inter-day precision of TARI-MS confirm its reliability as a robust tool for the analysis of saline samples. Furthermore, TARI-MS allowed continuous analysis of salty eluates of LC for up to nearly 1 h without maintenance and verified the feasibility of LC-MS analysis through detecting a five-drug mixture and a crude aripiprazole product. Finally, six impurities in the crude aripiprazole product were successfully detected by LC-TARI-MS. The established method holds promise for applications across academic and pharmaceutical domains.

13.
Environ Sci Pollut Res Int ; 31(21): 31455-31466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38635094

RESUMEN

Wastewater-based epidemiology (WBE) has become an objective and updated surveillance strategy for monitoring and estimating consumption trends of psychoactive substances (PSs) in the population. Firstly, magnetic shrimp shell biochar-based adsorbent (DZMBC) was synthesized and employed for extraction trace PSs from municipal wastewater. Proper pyrolysis temperature and increased KOH activator content favored the pore structure and surface area, thus facilitating extraction. DZMBC delivered exceptional extraction performance such as pH stability, anti-interference property, fast magnetic separation ability, reusability, and reproducibility. Then, a method based on magnetic solid-phase extraction (MSPE) followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed, validated, and utilized for the quantitative determination of five PSs in real wastewater samples. Methodological validation results indicated a favorable linearity, low method limits of detection (1.00-4.75 ng/L), and good precisions (intra-day and inter-day relative standard deviations < 4.8%). Finally, an objective snapshot of Chongqing drug use and consumption pattern was obtained. Methamphetamine (MAMP) and 3,4-methylenedioxymethamphetamine (MDMA) were the prevalent illegal drugs in local. Both concentrations and per capita consumption of MDMA displayed a change (P < 0.05) between July and September, while no statistical differences were observed for each week.


Asunto(s)
Psicotrópicos , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Aguas Residuales , Psicotrópicos/análisis , Aguas Residuales/química , Cromatografía Líquida de Alta Presión , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida con Espectrometría de Masas
14.
Chirality ; 36(2): e23647, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356207

RESUMEN

Ibuprofen (IBP), the 29th most prescribed drug in the United States in 2019, is a widely used nonsteroidal anti-inflammatory drug (NSAID) comprising two enantiomers, (R)-IBP and (S)-IBP, collectively known as (RS)-IBP. This critical review examines analytical techniques for the enantioselective separation and determination of IBP enantiomers, crucial for pharmaceutical and clinical applications. The review focuses on state-of-the-art methods, including chromatographic techniques including high-performance liquid chromatography, gas chromatography, liquid chromatography-tandem mass spectrometry, and some other techniques. This review addresses pharmacokinetics, pharmacology, and side effects of each enantiomer, ensuring safe drug usage. By consolidating diverse analytical methods and their applicability in different matrices, this review serves as a valuable resource for researchers, analysts, and practitioners in pharmaceutical analysis, pharmacology, and clinical studies.


Asunto(s)
Ibuprofeno , Espectrometría de Masas en Tándem , Ibuprofeno/química , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Preparaciones Farmacéuticas
15.
Forensic Sci Int ; 355: 111932, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246066

RESUMEN

The present work describes the development of a headspace solid-phase microextraction (HS-SPME) followed by gas chromatography - mass spectrometry (GC-MS) method for the qualitative analysis of compounds in seized ecstasy tablets that can be easily implemented in regular laboratories. HS-SPME with a DVB/CAR/PDMS 50/30 µm fiber was used to extract the ecstasy pills' components, including major and minor ones, in a single extraction/chromatographic run. For HS-SPME, the incubation time (0 min to 30 min), the extraction time (10 min to 40 min) and temperature (40 °C to 80 ºC), the buffer volume (3 mL to 8 mL), the buffer pH (6 to 9) and the NaCl concentration (0 mol/L to 6 mol/L) were evaluated using fractional factorial design. Different split ratios and detector voltages were also evaluated. The optimal compromise between sensitivity and peak resolution was found to be incubation and extraction at 65 ºC for 10 min and 25 min, respectively, 3 mL of pH 9 buffer containing 3 mol/L NaCl, using 40.0 mg of the powdered samples in a 15-mL amber glass vial, and an injection with a split ratio of 1:10 at 260 ºC for 10 min. Under optimal conditions, 44 samples from different seizures were analyzed. Seventy-five compounds were tentatively identified by the proposed method, including active substances, medicines, caffeine, safrole derivatives, synthesis intermediates and solvent residues. The number of tentatively identified compounds per sample varied from 8 to 24, with a mean of 15. Important findings in ecstasy samples, such as norcinamolaurin, α-methyl-1,3-benzodioxole-5-propanamide, α-methyl-3,4-methylenedioxyphenylpropionitrile, acetylsalicylic acid, piperonylonitrile, methyl isobutyl ketone, mesitylene, and 4-[3-(dimethylamino)propyl]- 2,6-dimethylphenol, identified with a frequency higher than 10%, are not found in the literature so far. The method precision, based on relative standard deviation of peak areas, ranged from 5% to 15%, depending on the compound. The method was shown to be simple, relatively fast, precise and a powerful tool for the identification of major and minor components in ecstasy tablets in a single analytical cycle, being useful for screening or quantitative purposes, if authentic standards are available.

16.
Mikrochim Acta ; 191(2): 112, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286966

RESUMEN

For the first time, a tumour hypoxia marker detection has been developed using two-dimensional layered composite modified electrodes in biological and environmental samples. The concept of TaB2 and V4C3-based MXene composite materials is not reported hitherto using ball-milling and thermal methods and it remains the potentiality of the present work. The successful formation is confirmed through various characterisation techniques like X-ray crystallography, scanning electron microscopy photoelectron, and impedance spectroscopy. A reliable and repeatable electrochemical sensor based on TaB2@V4C3/SPCE was developed for quick and extremely sensitive detection of pimonidazole by various electroanalytical methods. It has been shown that the modified electrode intensifies the reduction peak current and causes a decrease in the potential for reduction, in comparison with the bare electrode. The proposed sensor for pimonidazole reduction has strong electrocatalytic activity and high sensitivity, as demonstrated by the cyclic voltammetry approach. Under the optimal experimental circumstances, differential pulse voltammetry techniques were utilised for generating the wide linear range (0.02 to 928.51 µM) with a detection limit of 0.0072 µM. The resultant data demonstrates that TaB2@V4C3/SPCE nano-sensor exhibits excellent stability, reliability, and repeatability in the determination of pimonidazole. Additionally, the suggested sensor was successfully used to determine the presence of pimonidazole in several real samples, such as human blood serum, urine, water, and drugs.


Asunto(s)
Carbono , Nitroimidazoles , Tantalio , Humanos , Carbono/química , Vanadio , Reproducibilidad de los Resultados , Límite de Detección , Electrodos , Compuestos de Boro
17.
Pharmaceutics ; 16(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276519

RESUMEN

The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids.

18.
Drug Test Anal ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263623

RESUMEN

Globally, the number of drug users and the proportion of the drug using population has increased from 210 million in 2009 to 269 million in 2019. Several studies suggest that music festival attendees are more likely to abuse illicit substances and have a high-risk profile. Consequently, it is crucial to develop robust field drug analysis methods that facilitate harm reduction and drug monitoring. The work presented in this report aimed at developing and validating qualitative analytical methods for 3,4-methylenedioxymethamphetamine, 4-bromo-2,5-dimethoxyphenethylamine (2C-B), ketamine and N-ethylpentylone on two portable gas chromatography-mass spectrometry (GC-MS) systems: Griffin G510 (Teledyne FLIR, West Lafayette, IN) and Torion T-9 (PerkinElmer, Shelton, CT). The diagnostic ability of the mobile GC-MS units was assessed on 200 samples in total, seized at two large summer music festivals in the United Kingdom. The method validation process included selectivity/specificity, limit of identification, carry-over, ruggedness/robustness, and inter- and intra-day precision (repeatability and reproducibility). The Griffin G510 demonstrated a limit of identification from 1 mg/mL for 2C-B to 0.063 mg/mL for ketamine and good ruggedness and precision results. The precision for 2C-B using the Torion T-9 was poorer than for the Griffin G510, but equivalent for the other compounds tested. Correct identifications (versus benchtop GC-MS) for the two festivals were 85%-86% and 74%-83% for the Griffin G510 and the Torion T-9, respectively. The two portable instruments were able to adequately cover current on-site drug-testing analytical gaps and proved to be a powerful addition to the on-site drug analysis techniques.

19.
Br J Clin Pharmacol ; 90(1): 336-343, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776845

RESUMEN

AIMS: With the rising number of oral targeted oncolytics and growing awareness of the benefits of therapeutic drug monitoring (TDM) within the field of oncology, it is expected that the requests for quantifying concentrations of these drugs will increase. It is important to (cross-)validate available assays and ensure its quality, as results may lead to altered dosing recommendations. Therefore, we aimed to evaluate the performance of laboratories measuring concentrations of targeted oral oncolytics in a one-time international quality control (QC) programme. METHODS: Participating laboratories received a set of plasma samples containing low, medium and high concentrations of imatinib, sunitinib, desethylsunitinib, pazopanib, cabozantinib, olaparib, enzalutamide, desmethylenzalutamide and abiraterone, with the request to report their results back within five weeks after shipment. Accuracy was defined acceptable if measurements where within 85%-115% from the weighed-in reference concentrations. Besides descriptive statistics, an exploratory ANOVA was performed. RESULTS: Seventeen laboratories from six countries reported 243 results. Overall, 80.7% of all measurements were within the predefined range of acceptable accuracy. Laboratories performed best in quantifying imatinib and poorest in quantifying desethylsunitinib (median absolute inaccuracy respectively 4.0% (interquartile range (IQR) 1.8%-6.5%) and 15.5% (IQR 8.8%-34.9%)). The poorest performance of desethylsunitinib might be caused by using the stable-isotope-labelled sunitinib instead of desethylsunitinib as an internal standard, or due to the light-induced cis(Z)/trans(E) isomerization of (desethyl)sunitinib. Overall, drug substance and performing laboratory seemed to influence the absolute inaccuracy (F = 16.4; p < 0.001 and F = 35.5; p < 0.001, respectively). CONCLUSION: Considering this is the first evaluation of an international QC programme for oral targeted oncolytics, an impressive high percentage of measurements were within the predefined range of accuracy. Cross-validation of assays that are used for dose optimization of oncolytics will secure the performance and will protect patients from incorrect advices.


Asunto(s)
Sunitinib , Humanos , Mesilato de Imatinib , Control de Calidad
20.
J Am Soc Mass Spectrom ; 35(1): 82-89, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38064434

RESUMEN

Trace evidence, including hair, fibers, soil/dust, and gunshot residue (GSR), can be recovered from a crime scene to help identify or associate a suspect with illegal activities via physical, chemical, and biological testing. Vacuum collection is one technique that is employed in recovering such trace evidence but is often done so in a targeted manner, leaving other complementary, chemical-specific information unexamined. Here, we describe a modified 3D-printed cone spray ionization (3D-PCSI) source with integrated vacuum collection for on-site, forensic evidence screening, allowing the processing of targeted physical traces and nontargeted chemical species alike. The reported form factor allows sample collection, onboard extraction, filtration, and spray-based ionization in a singular vessel with minimal handling of evidence by the operator. Utilizing authentic forensic evidence types and portable MS instrumentation, this new method was characterized through systematic studies that replicate CSI applications. Reliability in the form of false positive/negative response rates was determined from a modest, user-blinded data set, and other attributes, such as collection efficacy and detection limit, were examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA