Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Genet Mol Biol ; 36(1): 93-100, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23569413

RESUMEN

Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.

2.
Sci. agric ; 69(4)2012.
Artículo en Inglés | LILACS-Express | VETINDEX | ID: biblio-1497288

RESUMEN

Epistasis (additive × additive interaction) plays an important role in the genetic architecture of complex traits. This study presents analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. In the first method, we observed only the plant phenotype, while in the second method we have additional information from the molecular markers observations. In this study, two data sets were analyzed: i) 150 barley (Hordeum vulgare L.) doubled-haploid lines derived from the cross Steptoe × Morex and ii) 145 doubled-haploid lines of barley obtained from the cross Harrington × TR306. In total, 153 sets of observations were analyzed. The additive × additive interaction effect calculated on the basis of the marker observations is smaller than the total additive × additive interaction effect obtained from phenotypic observations only.

3.
Sci. agric. ; 69(4)2012.
Artículo en Inglés | VETINDEX | ID: vti-440677

RESUMEN

Epistasis (additive × additive interaction) plays an important role in the genetic architecture of complex traits. This study presents analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. In the first method, we observed only the plant phenotype, while in the second method we have additional information from the molecular markers observations. In this study, two data sets were analyzed: i) 150 barley (Hordeum vulgare L.) doubled-haploid lines derived from the cross Steptoe × Morex and ii) 145 doubled-haploid lines of barley obtained from the cross Harrington × TR306. In total, 153 sets of observations were analyzed. The additive × additive interaction effect calculated on the basis of the marker observations is smaller than the total additive × additive interaction effect obtained from phenotypic observations only.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA