Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Psychometrika ; 85(2): 358-372, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451743

RESUMEN

We revisit a singular value decomposition (SVD) algorithm given in Chen et al. (Psychometrika 84:124-146, 2019b) for exploratory item factor analysis (IFA). This algorithm estimates a multidimensional IFA model by SVD and was used to obtain a starting point for joint maximum likelihood estimation in Chen et al. (2019b). Thanks to the analytic and computational properties of SVD, this algorithm guarantees a unique solution and has computational advantage over other exploratory IFA methods. Its computational advantage becomes significant when the numbers of respondents, items, and factors are all large. This algorithm can be viewed as a generalization of principal component analysis to binary data. In this note, we provide the statistical underpinning of the algorithm. In particular, we show its statistical consistency under the same double asymptotic setting as in Chen et al. (2019b). We also demonstrate how this algorithm provides a scree plot for investigating the number of factors and provide its asymptotic theory. Further extensions of the algorithm are discussed. Finally, simulation studies suggest that the algorithm has good finite sample performance.


Asunto(s)
Algoritmos , Simulación por Computador , Análisis Factorial , Análisis de Componente Principal , Psicometría
2.
Bernoulli (Andover) ; 23(1): 23-57, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28337068

RESUMEN

Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.

3.
Cancer Inform ; 14(Suppl 5): 109-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27081307

RESUMEN

High-dimensional data generally refer to data in which the number of variables is larger than the sample size. Analyzing such datasets poses great challenges for classical statistical learning because the finite-sample performance of methods developed within classical statistical learning does not live up to classical asymptotic premises in which the sample size unboundedly grows for a fixed dimensionality of observations. Much work has been done in developing mathematical-statistical techniques for analyzing high-dimensional data. Despite remarkable progress in this field, many practitioners still utilize classical methods for analyzing such datasets. This state of affairs can be attributed, in part, to a lack of knowledge and, in part, to the ready-to-use computational and statistical software packages that are well developed for classical techniques. Moreover, many scientists working in a specific field of high-dimensional statistical learning are either not aware of other existing machineries in the field or are not willing to try them out. The primary goal in this work is to bring together various machineries of high-dimensional analysis, give an overview of the important results, and present the operating conditions upon which they are grounded. When appropriate, readers are referred to relevant review articles for more information on a specific subject.

4.
Pattern Recognit ; 47(6): 2178-2192, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24729636

RESUMEN

The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

5.
Sankhya Ser A ; 75(2)2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24288447

RESUMEN

We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA