Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Intervalo de año de publicación
1.
Respir Physiol Neurobiol ; 328: 104314, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117159

RESUMEN

Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7 % CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.


Asunto(s)
Modelos Animales de Enfermedad , Agonistas de Dopamina , Proteína 2 de Unión a Metil-CpG , Quinpirol , Receptores de Dopamina D2 , Síndrome de Rett , Animales , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/agonistas , Agonistas de Dopamina/farmacología , Femenino , Ratones , Quinpirol/farmacología , Proteína 2 de Unión a Metil-CpG/genética , Respiración/efectos de los fármacos , Ratones Transgénicos , Regulación Alostérica/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Front Physiol ; 15: 1422270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072219

RESUMEN

Dopamine and histamine receptors D2R and H3R are G protein-coupled receptors (GPCRs) which can establish physical receptor-receptor interactions (RRIs), leading to homo/hetero-complexes in a dynamic equilibrium. Although D2R and H3R expression has been detected within the carotid body (CB), their possible heterodimerization has never been demonstrated. The aim of this work was to verify D2R and H3R colocalization in the CB, thus suggesting a possible interplay that, in turn, may be responsible of specific D2R-H3R antagonistic functional implications. The CBs of both Sprague-Dawley rats (n = 5) and human donors (n = 5) were dissected, and immunolocalization of D2R and H3R was performed; thereafter, in situ proximity ligation assay (PLA) was developed. According to experimental evidence (immunohistochemistry and double immunofluorescence), all the samples displayed positive D2R/H3R elements; hence, PLA assay followed by confocal microscopy analysis was positive for D2R-H3R RRIs. Additionally, D2R-H3R heterodimers were mainly detected in type I cells (ßIII-tubulin-positive cells), but type II cells' involvement cannot be excluded. RRIs may play a role in functional modulation of CB cells; investigating RRIs in the CB may guide toward the comprehension of its plastic changes and fine regulatory role while also unveiling their possible clinical implications.

3.
Cortex ; 176: 53-61, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749085

RESUMEN

Losses in dopamine (DA) functioning may contribute to aging-related decline in cognition. Hippocampal DA is necessary for successful episodic memory formation. Previously, we reported that higher DA D2 receptor (D2DR) availability in hippocampus is beneficial for episodic memory only in older carriers of more advantageous genotypes of well-established plasticity-related genetic variations, the brain-derived neurotrophic factor (BDNF, rs6265) and the kidney and brain expressed protein (KIBRA, rs17070145) polymorphisms. Extending our observations to the longitudinal level, the current data show that individuals with one or no beneficial BDNF and KIBRA genotype (n = 80) decline more in episodic memory across five years, without any contribution of losses in hippocampal D2DR availability to memory decline. Although carriers of two beneficial genotypes (n = 39) did not decline overall in episodic memory, losses of hippocampal D2DR availability were predictive of episodic-memory decline among these individuals. Our findings have implications for interventions targeting DA modulation to enhance episodic memory in aging, which may not benefit all older individuals.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Genotipo , Hipocampo , Memoria Episódica , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Femenino , Anciano , Envejecimiento/fisiología , Envejecimiento/genética , Polimorfismo de Nucleótido Simple , Persona de Mediana Edad , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Estudios Longitudinales , Polimorfismo Genético/genética , Pruebas Neuropsicológicas , Anciano de 80 o más Años , Péptidos y Proteínas de Señalización Intracelular
4.
J Cancer ; 15(4): 1041-1052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38230224

RESUMEN

Background: Dopamine receptors have been reported to be involved in pain, while the exact effects and mechanism in bone cancer pain have not been fully explored. Methods: Bone cancer pain model was created by implanting walker 256 mammary gland carcinoma into right tibia bone cavity. Primary cultured spinal neurons were used for in vitro evaluation. FLIPR, western-blot, immunofluorescence, and Co-IP were used to detect cell signaling pathway. Results: Our results indicated that spinal dopamine D1 receptor (D1DR) and spinal dopamine D2 receptor (D2DR) could form heteromers in TCI rats, and antagonizing spinal D1DR and D2DR reduced heteromers formation and alleviated TCI-induced bone cancer pain. Further results indicated that D1DR or D2DR antagonist induced antinociception in TCI rats could be reversed by D1DR, D2DR, and D1/D2DR heteromer agonists. And Gq, IP3, and PLC inhibitors also attenuated TCI-induced bone cancer pain. In vitro results indicated that D1DR or D2DR antagonist decreased the Ca2+ oscillations upregulated by D1DR, D2DR, and D1/D2DR heteromer agonists in activated primary cultured spinal neurons. Moreover, inhibition of D1/D2DR heteromers induced antinociception in TCI rats was partially mediated by the CaMKII and MAPKs pathway. In addition, a natural compound levo-Corydalmine (l-CDL), could inhibit D1/D2DR heteromers and attenuate bone cancer pain. Results: Inhibition of spinal D1/D2DR heteromers via l-CDL decreases excitability in spinal neurons, which might present new therapeutic strategy for bone cancer pain.

5.
Eur J Pharmacol ; 956: 175984, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567458

RESUMEN

Glucose metabolism is reported to be regulated by the central nervous system, but it is unclear whether this regulation is altered in diabetes. We investigated whether regulation of glucose metabolism by central dopamine D2 receptors is altered in type 1 and type 2 diabetic models. Intracerebroventricular injections of both the dopamine D2 receptor agonist quinpirole and the antagonist l-sulpiride induced hyperglycemia in control mice, but not in streptozotocin (STZ)-induced diabetic mice, a type 1 diabetic model. Hyperglycemia induced by quinpirole or l-sulpiride was diminished following fasting and these drugs did not affect hyperglycemia in the pyruvate tolerance test. In addition, both quinpirole and l-sulpiride increased hepatic glucose-6-phosphatase (G6Pase) mRNA. In STZ-induced diabetic mice, dopamine and dopamine D2 receptor mRNA in the hypothalamus, which regulates glucose homeostasis, were decreased. Hepatic glycogen and G6Pase mRNA were also decreased in STZ-induced diabetic mice. Neither quinpirole nor l-sulpiride increased hepatic G6Pase mRNA in STZ-induced diabetic mice. In diet-induced obesity mice, a type 2 diabetic model, both quinpirole and l-sulpiride induced hyperglycemia, and hypothalamic dopamine and dopamine D2 receptor mRNA were not altered. These results indicate that (i) stimulation or blockade of dopamine D2 receptors causes hyperglycemia by increasing hepatic glycogenolysis, and (ii) stimulation or blockade of dopamine D2 receptors does not affect glucose levels in type 1 but does so in type 2 diabetic models. Moreover, hypothalamic dopaminergic function and hepatic glycogenolysis are decreased in the type 1 diabetic model, which reduces hyperglycemia induced by stimulation or blockade of dopamine D2 receptors.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Ratones , Animales , Quinpirol/farmacología , Dopamina , Sulpirida/farmacología , Glucemia , Diabetes Mellitus Tipo 1/inducido químicamente , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacología , Receptores de Dopamina D1/metabolismo
6.
Eur Neuropsychopharmacol ; 72: 50-59, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086715

RESUMEN

There are indications that drug conditioned stimuli (CS) may activate neurochemical systems of memory modulation that are activated by the drugs themselves. To directly test this hypothesis, a cholinergic nicotinic receptor antagonist (mecamylamine; MEC: 0, 10 or 30 µg/side) and a dopamine D2 receptor antagonist (l-741,626: 0, 0.63, 2.5 µg/side) were infused in the perirhinal cortex (PRh) to block modulation of object recognition memory consolidation induced by 0.4 mg/kg nicotine, 20 mg/kg cocaine, or their CSs. To establish these CSs, male Sprague-Dawley rats were confined for 2 h in a chamber, the CS+, after injections of 0.4 mg/kg nicotine, or 20 mg/kg cocaine, and in another chamber, the CS-, after injections of vehicle. This was repeated over 10 days (5 drug/CS+ and 5 vehicle/CS- pairings in total). It was found that the memory enhancing action of post-sample nicotine was blocked by intra-PRh infusions of both MEC doses, and 30 µg/side MEC also blocked the memory enhancing action of the nicotine CS. Interestingly, intra-PRh MEC did not block the memory enhancing effect of cocaine, nor that of the cocaine CS. In contrast, the memory enhancing action of post-sample cocaine administration was blocked by both l-741,626 doses, and 2.5 µg/side also blocked the effect of the cocaine CS, but not the memory effects of nicotine or of the nicotine CS. This functional double dissociation strongly indicates that drug CSs modulate memory consolidation by activating neural systems that are activated by the drugs themselves.


Asunto(s)
Cocaína , Consolidación de la Memoria , Receptores Nicotínicos , Ratas , Animales , Masculino , Nicotina/farmacología , Cocaína/farmacología , Ratas Sprague-Dawley , Receptores de Dopamina D2 , Receptores de Dopamina D1
8.
Pharmacol Rep ; 75(1): 119-127, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385611

RESUMEN

BACKGROUND: The present study assessed the influence of recurrent social isolation stress on the aversive memory extinction and dopamine D2 receptors (D2R) expression in the amygdala and the hippocampus subnuclei. We also analyzed the expression of epigenetic factors potentially associated with fear extinction: miRNA-128 and miRNA-142 in the amygdala. METHODS: Male adult fear-conditioned rats had three episodes of 48 h social isolation stress before each fear extinction session in weeks intervals. Ninety minutes after the last extinction session, the D2R expression in the nuclei of the amygdala and the hippocampus (immunocytochemical technique), and mRNA levels for D2R in the amygdala were assessed (PCR). Moreover, we evaluated the levels of miRNA-128 and miRNA-142 in the amygdala. RESULTS: It was found that recurrent social isolation stress decreased the fear extinction rate. The extinguished isolated rats were characterized by higher expression of D2R in the CA1 area of the hippocampus compared to the extinguished and the control rats. In turn, the isolated group presented higher D2R immunoreactivity in the CA1 area compared to the extinguished, the control, and the extinguished isolated animals. Moreover, the extinguished animals had higher expression of D2R in the central amygdala than the control and the extinguished isolated rats. These changes were accompanied by the increase in miRNA-128 level in the amygdala in the extinguished isolated rats compared to the control, the extinguished, and the isolated rats. Moreover, the extinguished rats had lower expression of miRNA-128 compared to the control and the isolated animals. CONCLUSIONS: Our results suggest that social isolation stress impairs aversive memory extinction and coexists with changes in the D2R expression in the amygdala and hippocampus and increased expression of miRNA-128 in the amygdala.


Asunto(s)
Miedo , MicroARNs , Receptores de Dopamina D2 , Animales , Masculino , Ratas , Amígdala del Cerebelo/metabolismo , Extinción Psicológica , Hipocampo/metabolismo , MicroARNs/metabolismo , Receptores de Dopamina D2/metabolismo
9.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203271

RESUMEN

The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine. Psilocybin and ketamine increased the release of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of naive rats as demonstrated using microdialysis. Both drugs influenced glutamate and GABA release in the nucleus accumbens, hippocampus and amygdala and increased ACh levels in the hippocampus. The changes in D2, 5-HT1A and 5-HT2A receptor density in the nucleus accumbens and hippocampus were observed as a long-lasting effect. A marked anxiolytic effect of psilocybin in the acute phase and 24 h post-treatment was shown in the open field test. These data provide the neurobiological background for psilocybin's effect on stress, anxiety and structural changes in the limbic system and translate into the antidepressant effect of psilocybin in depressed patients.


Asunto(s)
Ketamina , Psilocibina , Humanos , Animales , Ratas , Psilocibina/farmacología , Ketamina/farmacología , Sistema Límbico , Ácido Glutámico , Antidepresivos/farmacología
10.
Front Pharmacol ; 13: 820447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645814

RESUMEN

Introduction: The misuse of stimulant drugs such as methamphetamine is a global public health issue. One important neurochemical mechanism of methamphetamine use disorder may be altered dopaminergic neurotransmission. For instance, previous studies using positron emission tomography (PET) have consistently shown that striatal dopamine D2-type receptor availability (quantified as binding potential; BPND) is lower in methamphetamine use disorder. Further, methamphetamine use is known to induce chronic neuroinflammation through multiple physiological pathways. Upregulation of D2-type receptor and/or attenuation of neuroinflammation may therefore provide a therapeutic effect for this disorder. In vitro studies have shown that blockage of adenosine 2A (A2A) receptors may prevent D2-receptor downregulation and neuroinflammation-related brain damage. However, no study has examined this hypothesis yet. Methods and Analysis: Using a within-subject design, this trial will assess the effect of the selective A2A receptor antagonist, istradefylline, primarily on D2-type BPND in the striatum, and secondarily on neuroinflammation in the whole brain in individuals with methamphetamine use disorder. The research hypotheses are that istradefylline will increase striatal D2-type BPND and attenuate neuroinflammation. Twenty participants with methamphetamine use disorder, aged 20-65, will be recruited to undergo [11C]raclopride PET (for every participant) and [11C]DAA1106 PET (if applicable) once before and once after administration of 40 mg/day istradefylline for 2 weeks. Neuropsychological measurements will be performed on the same days of the PET scans.

11.
Brain Behav Immun Health ; 22: 100446, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35496774

RESUMEN

Maternal immune activation (MIA) is a risk factor for schizophrenia in the offspring. MIA in pregnant rodents can be induced by injection of synthetic polyriboinosinic-polyribocytidilic acid (Poly I:C), which causes decreased striatal dopamine D2 receptor (D2R) expression and behavioral dysfunction mediated by the dopaminergic system in the offspring. However, previous studies did not determine whether Poly I:C induced cortical dopamine D2R abnormality in an MIA rat model. In this study, we performed micro-positron emission tomography (micro-PET) in vivo imaging and ex vivo neurochemical analyses of cortical D2Rs in MIA. In the micro-PET analyses, the anterior cingulate cortex (ACC) region in the offspring showed significantly reduced binding potential for [11C]FLB457, a high affinity radio-ligand toward D2Rs. Neurochemical analysis showed reduction of D2Rs and augmentation of dopamine turnover in the ACC of the rat offspring. Thus, MIA induces dopaminergic dysfunction in the ACC of offspring, similar to the neuronal pathology reported in patients with schizophrenia.

12.
Cell Rep ; 39(6): 110795, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545050

RESUMEN

Dopamine modulation of nucleus accumbens (NAc) circuitry is central to theories of reward seeking and reinforcement learning. Despite decades of effort, the acute dopamine actions on the NAc microcircuitry remain puzzling. Here, we dissect out the direct actions of dopamine on lateral inhibition between medium spiny neurons (MSNs) in mouse brain slices and find that they are pathway specific. Dopamine potently depresses GABAergic transmission from presynaptic dopamine D2 receptor-expressing MSNs (D2-MSNs), whereas it potentiates transmission from presynaptic dopamine D1 receptor-expressing MSNs (D1-MSNs) onto other D1-MSNs. To our surprise, presynaptic D2 receptors mediate only half of the depression induced by endogenous and exogenous dopamine. Presynaptic serotonin 5-HT1B receptors are responsible for a significant component of dopamine-induced synaptic depression. This study clarifies the mechanistic understanding of dopamine actions in the NAc by showing pathway-specific modulation of lateral inhibition and involvement of D2 and 5-HT1B receptors in dopamine depression of D2-MSN synapses.


Asunto(s)
Dopamina , Núcleo Accumbens , Animales , Dopamina/metabolismo , Ratones , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Serotonina/metabolismo , Sinapsis/metabolismo
13.
Curr Biol ; 32(8): 1675-1688.e7, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35259340

RESUMEN

Animals with diverse diets must adapt their food priorities to a wide variety of environmental conditions. This diet optimization problem is especially complex for predators that compete with prey for food. Although predator-prey competition is widespread and ecologically critical, it remains difficult to disentangle predatory and competitive motivations for attacking competing prey. Here, we dissect the foraging decisions of the omnivorous nematode Pristionchus pacificus to reveal that its seemingly failed predatory attempts against Caenorhabditis elegans are actually motivated acts of efficacious territorial aggression. While P. pacificus easily kills and eats larval C. elegans with a single bite, adult C. elegans typically survives and escapes bites. However, non-fatal biting can provide competitive benefits by reducing access of adult C. elegans and its progeny to bacterial food that P. pacificus also eats. We show that the costs and benefits of both predatory and territorial outcomes influence how P. pacificus decides which food goal, prey or bacteria, should guide its motivation for biting. These predatory and territorial motivations impose different sets of rules for adjusting willingness to bite in response to changes in bacterial abundance. In addition to biting, predatory and territorial motivations also influence which search tactic P. pacificus uses to increase encounters with C. elegans. When treated with an octopamine receptor antagonist, P. pacificus switches from territorial to predatory motivation for both biting and search. Overall, we demonstrate that P. pacificus assesses alternate outcomes of attacking C. elegans and flexibly reprograms its foraging strategy to prioritize either prey or bacterial food.


Asunto(s)
Caenorhabditis elegans , Nematodos , Animales , Bacterias , Caenorhabditis elegans/fisiología , Motivación , Nematodos/fisiología , Conducta Predatoria
14.
Front Neurosci ; 15: 729153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588952

RESUMEN

Introduction: Altered dopaminergic neurotransmission, especially in the functioning of dopamine D2-type receptors, is considered central to the etiology of a variety of neuropsychiatric disorders. In particular, individuals with substance use disorders have been consistently observed to exhibit lower D2-type receptor availability (quantified as binding potential; BPND) using positron emission tomography (PET). Upregulation of D2-type receptor density thus may therefore provide a therapeutic effect for substance use disorders. Importantly, in vitro studies reveal that D2 receptors coexist with adenosine 2A (A2A) receptors to form the highest density of heteromers in the whole striatum, and there is a functional interaction between these two receptors. As such, blockade of A2A receptor's function may prevent D2 receptor downregulation, yet no study has currently examined this hypothesis in humans. Methods and Analysis: This double-blind, randomized controlled trial aims to evaluate the effect of the A2A receptor antagonist istradefylline (compared to placebo) on both dopamine D2-type receptor availability in the human brain and on neuropsychological measurements of impulsivity. It is hypothesized that istradefylline will both increase striatal D2-type BPND and improve control of impulsivity more than placebo. Forty healthy participants, aged 20-65 with no history of psychiatric or neurological disorders, will be recruited and randomized into two groups and will undergo [11C]raclopride PET, once before and once after administration of either 40 mg/day istradefylline or placebo for 2 weeks. Neuropsychological measurements will be administered on the same days of the PET scans. Ethics and Dissemination: The study protocol was approved by the Certified Review Boards (CRB) of National Center of Neurology and Psychiatry (CR18-011) and prospectively registered with the Japan Registry of Clinical Trials (jRCTs031180131; https://jrct.niph.go.jp/latest-detail/jRCTs031180131). The findings of this study will be disseminated through peer reviewed scientific journals and conferences. Clinical Trial Registration:www.ClinicalTrials.gov, identifier jRCTs031180131.

15.
Neurobiol Aging ; 105: 272-279, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34134056

RESUMEN

Normal brain aging is a multidimensional process that includes deterioration in various brain structures and functions, with large heterogeneity in patterns and rates of decline. Sex differences have been reported for various cognitive and brain parameters, but little is known in relation to neuromodulatory aspects of brain aging. We examined sex differences in dopamine D2-receptor (D2DR) availability in relation to episodic memory, but also, grey-matter volumes, white-matter lesions, and cerebral perfusion in healthy older adults (n = 181, age: 64-68 years) from the Cognition, Brain, and Aging study. Women had higher D2DR availability in midbrain and left caudate and putamen, as well as superior episodic memory performance. Controlling for left caudate D2DR availability attenuated sex differences in memory performance. In men, lower left caudate D2DR levels were associated with lower cortical perfusion and higher burden of white-matter lesions, as well as with episodic memory performance. However, sex was not a significant moderator of the reported links to D2DR levels. Our findings suggest that sex differences in multiple associations among DA receptor availability, vascular factors, and structural connectivity contribute to sex differences in episodic memory. Future longitudinal studies need to corroborate these patterns by lead-lag associations. This manuscript is part of the Special Issue entitled 'Cognitive Neuroscience of Healthy and Pathological Aging' edited by Drs. M. N. Rajah, S. Belleville, and R. Cabeza. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.


Asunto(s)
Encéfalo/patología , Dopamina/metabolismo , Envejecimiento Saludable/metabolismo , Envejecimiento Saludable/patología , Memoria Episódica , Receptores de Dopamina D2/metabolismo , Caracteres Sexuales , Anciano , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Cognición , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/patología
16.
Front Physiol ; 12: 645723, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935801

RESUMEN

Adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) are known to be involved in the physiological response to hypoxia, and their expression/activity may be modulated by chronic sustained or intermittent hypoxia. To date, A2AR and D2R can form transient physical receptor-receptor interactions (RRIs) giving rise to a dynamic equilibrium able to influence ligand binding and signaling, as demonstrated in different native tissues and transfected mammalian cell systems. Given the presence of A2AR and D2R in type I cells, type II cells, and afferent nerve terminals of the carotid body (CB), the aim of this work was to demonstrate here, for the first time, the existence of A2AR-D2R heterodimers by in situ proximity ligation assay (PLA). Our data by PLA analysis and tyrosine hydroxylase/S100 colocalization indicated the formation of A2AR-D2R heterodimers in type I and II cells of the CB; the presence of A2AR-D2R heterodimers also in afferent terminals is also suggested by PLA signal distribution. RRIs could play a role in CB dynamic modifications and plasticity in response to development/aging and environmental stimuli, including chronic intermittent/sustained hypoxia. Exploring other RRIs will allow for a broad comprehension of the regulative mechanisms these interactions preside over, with also possible clinical implications.

17.
Adv Pharmacol ; 90: 253-276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706936

RESUMEN

Schizophrenia is associated with a tremendous individual and societal burden. The disease is characterized by a complex set of symptoms including psychosis, hallucinations, delusions and related positive symptoms combined with social function deficits, cognitive disturbances and, often, devastating mood disorder, such as comorbid depression. Management of the disease often requires lifelong pharmacotherapy. However, many pharmacotherapies do not improve all symptoms (e.g., social withdrawal, depression, cognitive deficits) and can be associated with intolerable side effects such as weight gain and metabolic disturbances, motor dysfunction and endocrine dysregulation. Lumateperone (ITI-007, CAPLYTA™) is a novel antipsychotic agent, discovered and developed by Intra-Cellular Therapies, Inc. (ITCI) and approved for treatment of schizophrenia in adults in December 2019. Lumateperone simultaneously modulates serotonin, dopamine and glutamate neurotransmission, three key neurotransmitters implicated in schizophrenia. It achieves efficacy with a favorable safety profile. The clinical development program included 20 clinical trials with over 1900 individuals exposed to lumateperone. The program demonstrated the efficacy for lumateperone in two positive well controlled trials in patients with schizophrenia. The unique pharmacology of lumateperone supports the observed benefits across a wide range of symptoms, including social function and depression, and supports its favorable safety profile. Here, we review the discovery of lumateperone's unique biological effects and its clinical actions in the treatment of schizophrenia.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Animales , Antipsicóticos/uso terapéutico , Conducta , Compuestos Heterocíclicos de 4 o más Anillos/efectos adversos , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Esquizofrenia/diagnóstico por imagen , Resultado del Tratamiento
18.
Biomedicines ; 9(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430188

RESUMEN

Brain injury is a significant risk factor for chronic gliosis and neurodegenerative diseases. Currently, no treatment is available for neuroinflammation caused by the action of glial cells following brain injury. In this study, we investigated the quinpirole-mediated activation of dopamine D2 receptors (D2R) in a mouse model of traumatic brain injury (TBI). We also investigated the neuroprotective effects of quinpirole (a D2R agonist) against glial cell-induced neuroinflammation secondary to TBI in adult mice. After the brain injury, we injected quinpirole into the TBI mice at a dose of 1 mg/kg daily intraperitoneally for 7 days. Our results showed suppression of D2R expression and deregulation of downstream signaling molecules in ipsilateral cortex and striatum after TBI on day 7. Quinpirole administration regulated D2R expression and significantly reduced glial cell-induced neuroinflammation via the D2R/Akt/glycogen synthase kinase 3 beta (GSK3-ß) signaling pathway after TBI. Quinpirole treatment concomitantly attenuated increase in glial cells, neuronal apoptosis, synaptic dysfunction, and regulated proteins associated with the blood-brain barrier, together with the recovery of lesion volume in the TBI mouse model. Additionally, our in vitro results confirmed that quinpirole reversed the microglial condition media complex-mediated deleterious effects and regulated D2R levels in HT22 cells. This study showed that quinpirole administration after TBI reduced secondary brain injury-induced glial cell activation and neuroinflammation via regulation of the D2R/Akt/GSK3-ß signaling pathways. Our study suggests that quinpirole may be a safe therapeutic agent against TBI-induced neurodegeneration.

19.
Front Behav Neurosci ; 15: 803574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095441

RESUMEN

Dopamine is a key factor in the enablement of cognition and hippocampal information processing. Its action in the hippocampus is mediated by D1/D5 and D2-like (D2, D3, D4) receptors. While D1/D5-receptors are well recognized as strong modulators of hippocampal synaptic plasticity and information storage, much less is known about the role of D2-like receptors (D2R) in these processes. Here, we explored to what extent D2R contribute to synaptic plasticity and cumulative spatial memory derived from semantic and episodic-like information storage. In freely behaving adult rats, we also assessed to what extent short and long-term forms of synaptic plasticity are influenced by pharmacological activation or blockade of D2R. Antagonism of D2R by means of intracerebral treatment with remoxipride, completely prevented the expression of both short-term (<1 h) and long-term potentiation (>4 h), as well as the expression of short-term depression (STD, <1 h) in the hippocampal CA1 region. Scrutiny of involvement of D2R in spatial learning revealed that D2R-antagonism prevented retention of a semantic spatial memory task, and also significantly impaired retention of recent spatiotemporal aspects of an episodic-like memory task. Taken together, these findings indicate that D2R are required for bidirectional synaptic plasticity in the hippocampal CA1 region. Furthermore, they are critically involved in enabling cumulative and episodic-like forms of spatial learning.

20.
J Neurosci Res ; 99(3): 947-965, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33271630

RESUMEN

Cognitive decline in Parkinson's disease (PD) is a common sequela of the disorder that has a large impact on patient well-being. Its physiological etiology, however, remains elusive. Our study used graph theory analysis to investigate the large-scale topological patterns of the extrastriatal dopamine D2 receptor network. We used positron emission tomography with [11 C]FLB-457 to measure the binding potential of cortical dopamine D2 receptors in two networks: the meso-cortical dopamine network and the meso-limbic dopamine network. We also investigated the application of partial volume effect correction (PVEC) in conjunction with graph theory analysis. Three groups were investigated in this study divided according to their cognitive status as measured by the Montreal Cognitive Assessment score, with a score ≤25 considered cognitively impaired: (a) healthy controls (n = 13, 11 female), (b) cognitively unimpaired PD patients (PD-CU, n = 13, 5 female), and (c) PD patients with mild cognitive impairment (PD-MCI, n = 17, 4 female). In the meso-cortical network, we observed increased small-worldness, normalized clustering, and local efficiency in the PD-CU group compared to the PD-MCI group, as well as a hub shift in the PD-MCI group. Compensatory reorganization of the meso-cortical dopamine D2 receptor network may be responsible for some of the cognitive preservation observed in PD-CU. These results were found without PVEC applied and PVEC proved detrimental to the graph theory analysis. Overall, our findings demonstrate how graph theory analysis can be used to detect subtle changes in the brain that would otherwise be missed by regional comparisons of receptor density.


Asunto(s)
Encéfalo/fisiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Enfermedad de Parkinson/fisiopatología , Receptores de Dopamina D2/fisiología , Anciano , Mapeo Encefálico , Dopamina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Receptores de Dopamina D2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA