Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 186, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218857

RESUMEN

BACKGROUND: Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS: Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS: Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.


Asunto(s)
Cetáceos , Receptores de Neuropéptido , Animales , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Cetáceos/genética , Cetáceos/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Pleiotropía Genética , Mutación , Filogenia
2.
Eur J Appl Physiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044031

RESUMEN

PURPOSE: Apnea duration is dependent on three factors: oxygen storage, oxygen consumption, hypoxia and hypercapnia tolerance. While current literature focuses on maximal apneas to improve apnea duration, apnea trained individuals use timed-repeated submaximal apneas, called "O2 and CO2 tables". These tables claim to accommodate the body to cope with hypoxia and hypercapnia, respectively. The aim of this study was twofold. First, to investigate the determinants of maximal apnea duration in apnea novices. Second, to compare physiologic responses to maximal apneas, O2 and CO2 tables. METHODS: After medical screening, lung function test and hemoglobin mass measurement, twenty-eight apnea novices performed three apnea protocols in random order: maximal apneas, O2 table and CO2 table. During apnea, peripheral oxygen saturation (SpO2), heart rate (HR), muscle (mTOI) and cerebral (cTOI) tissue oxygenation index were measured continuously. End-tidal carbon dioxide (EtCO2) was measured before and after apneas. RESULTS: Larger lung volumes, higher resting cTOI and lower resting EtCO2 levels correlated with longer apnea durations. Maximal apneas induced greater decreases in SpO2 (- 16%) and cTOI (- 13%) than O2 (- 8%; - 8%) and CO2 tables (- 6%; - 6%), whereas changes in EtCO2, HR and mTOI did not differ between protocols. CONCLUSION: These results suggest that, in apnea novices, O2 and CO2 tables did not induce a more profound hypoxia and hypercapnia, but a similar reduction in oxygen consumption than maximal apneas. Therefore, apnea novices should mainly focus on maximal apneas to improve hypoxia and hypercapnia tolerance. The use of specific lung training protocols can help to increase oxygen storage capacity.

3.
Physiol Rep ; 12(11): e16054, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872580

RESUMEN

We aimed to determine the relative contribution of hypercapnia and hypoxia to the bradycardic response to apneas. We hypothesized that apneas with hypercapnia would cause greater bradycardia than normoxia, similar to the response seen with hypoxia, and that apneas with hypercapnic hypoxia would induce greater bradycardia than hypoxia or hypercapnia alone. Twenty-six healthy participants (12 females; 23 ± 2 years; BMI 24 ± 3 kg/m2) underwent three gas challenges: hypercapnia (+5 torr end tidal partial pressure of CO2 [PETCO2]), hypoxia (50 torr end tidal partial pressure of O2 [PETO2]), and hypercapnic hypoxia (combined hypercapnia and hypoxia), with each condition interspersed with normocapnic normoxia. Heart rate and rhythm, blood pressure, PETCO2, PETO2, and oxygen saturation were measured continuously. Hypercapnic hypoxic apneas induced larger bradycardia (-19 ± 16 bpm) than normocapnic normoxic apneas (-11 ± 15 bpm; p = 0.002), but had a comparable response to hypoxic (-19 ± 15 bpm; p = 0.999) and hypercapnic apneas (-14 ± 14 bpm; p = 0.059). Hypercapnic apneas were not different from normocapnic normoxic apneas (p = 0.134). After removal of the normocapnic normoxic heart rate response, the change in heart rate during hypercapnic hypoxia (-11 ± 16 bpm) was similar to the summed change during hypercapnia+hypoxia (-9 ± 10 bpm; p = 0.485). Only hypoxia contributed to this bradycardic response. Under apneic conditions, the cardiac response is driven by hypoxia.


Asunto(s)
Apnea , Bradicardia , Frecuencia Cardíaca , Hipercapnia , Hipoxia , Humanos , Hipercapnia/fisiopatología , Femenino , Masculino , Frecuencia Cardíaca/fisiología , Hipoxia/fisiopatología , Apnea/fisiopatología , Adulto , Bradicardia/fisiopatología , Adulto Joven , Presión Sanguínea/fisiología , Dióxido de Carbono/metabolismo
4.
Methods Mol Biol ; 2753: 421-446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285357

RESUMEN

Apart from morphological, biochemical, and genetic alterations induced by teratogen compounds, there is an increased interest in characterizing behavioral alterations. Behavior is a sensitive parameter that can provide information regarding developmental disruptions non-invasively. Behavioral disturbances interfere with animals' capacity to cope with the environment, having an impact on the organism's life. Hereby, behavioral assays consisting of recording larvae in multi-well plates, Petri dishes, or cuvettes and video analysis using adequate software, allowing teratogen screening of behavior, are proposed. Examples of how to evaluate locomotor, anxiety-like and avoidance-like behaviors, and the integrity of sensory-motor functions and learning are discussed in this chapter.


Asunto(s)
Perciformes , Pez Cebra , Animales , Reflejo de Sobresalto , Teratógenos , Ansiedad , Larva
5.
Eur J Appl Physiol ; 123(11): 2483-2493, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37300699

RESUMEN

PURPOSE: To examine the effect of freediving depth on risk for hypoxic blackout by recording arterial oxygen saturation (SpO2) and heart rate (HR) during deep and shallow dives in the sea. METHODS: Fourteen competitive freedivers conducted open-water training dives wearing a water-/pressure proof pulse oximeter continuously recording HR and SpO2. Dives were divided into deep (> 35 m) and shallow (10-25 m) post-hoc and data from one deep and one shallow dive from 10 divers were compared. RESULTS: Mean ± SD depth was 53 ± 14 m for deep and 17 ± 4 m for shallow dives. Respective dive durations (120 ± 18 s and 116 ± 43 s) did not differ. Deep dives resulted in lower minimum SpO2 (58 ± 17%) compared with shallow dives (74 ± 17%; P = 0.029). Overall diving HR was 7 bpm higher in deep dives (P = 0.002) although minimum HR was similar in both types of dives (39 bpm). Three divers desaturated early at depth, of which two exhibited severe hypoxia (SpO2 ≤ 65%) upon resurfacing. Additionally, four divers developed severe hypoxia after dives. CONCLUSIONS: Despite similar dive durations, oxygen desaturation was greater during deep dives, confirming increased risk of hypoxic blackout with increased depth. In addition to the rapid drop in alveolar pressure and oxygen uptake during ascent, several other risk factors associated with deep freediving were identified, including higher swimming effort and oxygen consumption, a compromised diving response, an autonomic conflict possibly causing arrhythmias, and compromised oxygen uptake at depth by lung compression possibly leading to atelectasis or pulmonary edema in some individuals. Individuals with elevated risk could likely be identified using wearable technology.


Asunto(s)
Buceo , Hipoxia , Humanos , Oxígeno , Frecuencia Cardíaca/fisiología , Oximetría , Agua , Buceo/efectos adversos
6.
Physiol Biochem Zool ; 96(2): 153-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36921266

RESUMEN

AbstractThe idea of putting astronauts into a hibernation-like state during interplanetary spaceflights has sparked new interest in the evolutionary roots of hibernation and torpor. In this context, it should be noted that mammalian fetuses and neonates respond to the environmental challenges in the perinatal period with a number of physiological mechanisms that bear striking similarity to hibernation and torpor. These include three main points: first, prenatal deviation from the overall metabolic size relationship, which adapts the fetus to the low-oxygen conditions in the womb and corresponds to the metabolic reduction during hibernation and estivation; second, intranatal diving bradycardia in response to shortened O2 supply during birth, comparable to the decrease in heart rate preceding the drop in body temperature upon entry into torpor; and third, postnatal onset of nonshivering thermogenesis in the brown adipose tissue, along with the increase in basal metabolic rate up to the level expected from body size, such as during arousal from hibernation. The appearance of hibernation-like adaptations in the perinatal period suggests that, conversely, hibernation and torpor may be composed of mechanisms shared by all mammals around birth. This hypothesis sheds new light on the origins of hibernation and supports its potential accessibility to nonhibernating species, including humans.


Asunto(s)
Hibernación , Letargo , Humanos , Animales , Femenino , Hibernación/fisiología , Mamíferos/fisiología , Temperatura Corporal , Útero
7.
Front Physiol ; 14: 1109958, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960158

RESUMEN

The spleen contracts during apnea, releasing stored erythrocytes, thereby increasing systemic hemoglobin concentration (Hb). We compared apnea and rebreathing periods, of equal sub-maximal duration (mean 137 s; SD 30), in eighteen subjects to evaluate whether respiratory arrest or hypoxic and hypercapnic chemoreceptor stimulation is the primary elicitor of splenic contraction and cardiovascular responses during apnea. Spleen volume, Hb, cardiovascular variables, arterial (SaO2), cerebral (ScO2), and deltoid muscle oxygen saturations (SmO2) were recorded during the trials and end-tidal partial pressure of oxygen (PETO2) and carbon dioxide (PETCO2) were measured before and after maneuvers. The spleen volume was smaller after apnea, 213 (89) mL, than after rebreathing, 239 (95) mL, corresponding to relative reductions from control by 20.8 (17.8) % and 11.6 (8.0) %, respectively. The Hb increased 2.4 (2.0) % during apnea, while there was no significant change with rebreathing. The cardiovascular responses, including bradycardia, decrease in cardiac output, and increase in total peripheral resistance, were augmented during apnea compared to during rebreathing. The PETO2 was higher, and the PETCO2 was lower, after apnea compared to after rebreathing. The ScO2 was maintained during maneuvers. The SaO2 decreased 3.8 (3.1) % during apnea, and even more, 5.4 (4.4) %, during rebreathing, while the SmO2 decreased less during rebreathing, 2.2 (2.8) %, than during apnea, 8.3 (6.2) %. We conclude that respiratory arrest per se is an important stimulus for splenic contraction and Hb increase during apnea, as well as an important initiating factor for the apnea-associated cardiovascular responses and their oxygen-conserving effects.

8.
Psychophysiology ; 60(3): e14183, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36219506

RESUMEN

This article aimed to synthesize the various triggers of the diving response and to perform a meta-analysis assessing their effects on cardiac vagal activity. The protocol was preregistered on PROSPERO (CRD42021231419; 01.07.2021). A systematic and meta-analytic review of cardiac vagal activity was conducted, indexed with the root mean square of successive differences (RMSSD) in the context of the diving response. The search on MEDLINE (via PubMed), Web of Science, ProQuest and PsycNet was finalized on November 6th, 2021. Studies with human participants were considered, measuring RMSSD pre- and during and/or post-exposure to at least one trigger of the diving response. Seventeen papers (n = 311) met inclusion criteria. Triggers examined include face immersion or cooling, SCUBA diving, and total body immersion into water. Compared to resting conditions, a significant moderate to large positive effect was found for RMSSD during exposure (Hedges' g = 0.59, 95% CI 0.36 to 0.82, p < .001), but not post-exposure (g = 0.11, 95% CI -0.14 to 0.36, p = .34). Among the considered moderators, total body immersion had a significantly larger effect than forehead cooling (QM  = 23.46, df = 1, p < .001). No further differences were detected. Limitations were the small number of studies included, heterogenous triggers, few participants and low quality of evidence. Further research is needed to investigate the role of cardiac sympathetic activity and of the moderators.


Asunto(s)
Buceo , Humanos , Buceo/fisiología , Frecuencia Cardíaca/fisiología , Nervio Vago/fisiología
9.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R839-R848, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222874

RESUMEN

Static apneas performed after an overnight fast as opposed to postprandially have been evinced to improve apneic performance. However, no study has explored the effect of dietary intake on apneic performance, cardiovascular or splenic responses over a series of repeated apneas. Ten healthy adults attended the laboratory on three separate occasions (≥48-h apart): after a 14-h fast (F14), 1 h postconsumption of a high-calorie, high-carbohydrate (HCHC) meal, or 1 h postconsumption of a low-calorie, low-carbohydrate (LCLC)-based meal. During each visit, the subjects performed a hyperoxic rebreathing trial and a series of three repeated maximal static apneas. Heart rate, peripheral oxyhemoglobin saturation ([Formula: see text]), and gas exchange were monitored continuously, whereas splenic volume (SV) and hematology were assessed after the rebreathing and apneas. At rest, after HCHC, the respiratory exchange ratio (0.87 ± 0.17, P ≤ 0.043), expired minute volume of carbon dioxide (CO2; HCHC, 0.35 ± 0.09 L/min, P ≤ 0.014), and SV (227 ± 45 mL, P ≤ 0.031) were higher compared with F14 (0.71 ± 0.08; 0.23 ± 0.04 L/min; 204 ± 49 mL) and LCLC (0.72 ± 0.07; 0.25 ± 0.03 L/min; 199 ± 49 mL). A faster CO2 accumulation was recorded during the HCHC (96 ± 35 s) rebreathing trial (F14, 162 ± 42 s, P = 0.001; LCLC, 151 ± 23 s, P = 0.002). Longer apneas were reported in F14 compared with HCHC (apneas 1-3, P ≤ 0.046) and LCLC (apneas 2-3, P ≤ 0.006). After the first apnea, SV was lower in F14 (141 ± 43 mL, P = 0.015) compared with HCHC (180 ± 34 mL). Moreover, after the third apnea, end-tidal partial pressure of oxygen and nadir [Formula: see text] were lower in F14 (8.6 ± 2.2 kPa, P = 0.028; 77 ± 13%, P = 0.009) compared with HCHC (10.1 ± 1.7 kPa; 84 ± 9%). No differences were measured in end-apneic end-tidal partial pressure of CO2, heart rate nor hematology across diets. Fasting improved apneic performance with apneas being terminated at lower oxygen levels through altering the rate of CO2 accumulation but without affecting the cardiovascular responses.


Asunto(s)
Apnea , Buceo , Adulto , Humanos , Contencion de la Respiración , Dióxido de Carbono , Buceo/fisiología , Oxígeno , Ingestión de Alimentos , Carbohidratos
10.
J Neurosci Methods ; 381: 109706, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089166

RESUMEN

BACKGROUND: Zebrafish are used in anxiety research as the species' naturalistic diving response to a new environment is a reliable and validated marker for anxiety-like behavior. One of the benefits of using zebrafish is the potential for high throughput drug screens in fish at the larval stage. However, at present, tests of anxiety in larvae and adults often measure different endpoints. NEW METHOD: Here, for the first time, we have adapted the novel tank diving response test for examining diving behavior in zebrafish larvae to assess anxiety-like behaviors at very early-stages (7 days-post-fertilization [dpf]). COMPARISON WITH EXISTING METHODS: Current methods to examine anxiety in larvae can show low reliability, and measure different endpoints as in adults, thus calling into question their translational relevance. RESULTS: We found that 7dpf zebrafish spent more time at the bottom of a small novel tank. We validated this as anxiety-like behaviors with diazepam reducing, and caffeine increasing the time spent in the bottom of the novel environment. CONCLUSIONS: This new automated and high-throughput screening tool has the potential use for screening of anxiogenic and anxiolytic compounds, and for studies aiming to better understand anxiety-like behaviors.


Asunto(s)
Ansiolíticos , Buceo , Animales , Ansiolíticos/farmacología , Ansiedad , Conducta Animal/fisiología , Cafeína/farmacología , Diazepam/farmacología , Modelos Animales de Enfermedad , Larva , Reproducibilidad de los Resultados , Pez Cebra
11.
Respir Physiol Neurobiol ; 303: 103918, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35550439

RESUMEN

PURPOSE: This study investigated the effects of lung volume and trigeminal nerve stimulation (TS) on diving responses in breath-hold divers (BHDs) and non-divers (NDs). METHODS: Eight BHDs and nine NDs performed four breath-hold trials at different lung volumes, with or without TS, and one trial of TS. Haemodynamic parameters and electrocardiograms were measured for each trial. RESULTS: During the TS trial, the total peripheral resistance increased more in BHDs. Breath-hold performed at total lung capacity showed a more pronounced decrease in stroke volume and cardiac output in BHDs. The decrease in heart rate and increase in total peripheral resistance were more pronounced in BHDs when breath-holding was performed with TS. CONCLUSION: The more pronounced diving response in BHDs was attributed to the greater increase in total peripheral resistance caused by TS. Furthermore, the lower stroke volume and cardiac output in BH performed at total lung capacity could also cause a more pronounced diving response in BHDs.


Asunto(s)
Buceo , Contencion de la Respiración , Buceo/fisiología , Frecuencia Cardíaca/fisiología , Mediciones del Volumen Pulmonar , Nervio Trigémino
12.
Biol Open ; 11(3)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35225332

RESUMEN

Heart rates of air-breathing diving animals can change on a short time scale due to the diving response during submergence. Heart rate is used frequently as a proxy for indirectly estimating metabolic rates on a fine time scale. However, most studies to date have been conducted on endothermic diving animals, and the relationships between metabolic rates and heart rates in ectothermic diving animals have not been well studied. Sea turtles are unique model organisms of diving ectotherms because they spend most of their life in the ocean and perform deep and/or long dives. In this study, we examined the relationship between heart rates and metabolic rates in captive loggerhead turtles, Caretta caretta, to estimate oxygen consumption rates during each dive based on heart rates. The oxygen consumption rates (V̇O2: mlO2 min-1 kg-1) and average heart rates (fH: beats min-1) were measured simultaneously in indoor tanks at water temperatures of 15-25°C. Our results showed that oxygen consumption rate was affected by heart rate and water temperature in loggerhead turtles. Based on the collected data, we formulated the model equation as V̇O2=0.0124fH+0.0047Tw - 0.0791. The equation can be used for estimating fine-scaled field metabolic rates in free-ranging loggerhead turtles. The results of this study will contribute to future comparative studies of the physiological states of ectothermic diving animals.


Asunto(s)
Buceo , Tortugas , Animales , Buceo/fisiología , Frecuencia Cardíaca/fisiología , Consumo de Oxígeno/fisiología , Temperatura , Tortugas/fisiología
13.
Front Psychiatry ; 12: 784884, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912254

RESUMEN

Increased CO2 sensitivity is common in panic disorder (PD) patients. Free divers who are known for their exceptional breathing control have lower CO2 sensitivity due to training effects. This study aimed to investigate the immediate effects of cold facial immersion (CFI), breath holding and CO2 challenges on panic symptoms. Healthy participants and patients with PD were subjected to four experimental conditions in a randomly assigned order. The four conditions were (a) breath-holding (BH), (b) CFI for 30 s, (c) CO2 challenge, and (d) CO2 challenge followed by CFI. Participants completed a battery of psychological measures, and physiological data (heart rate and respiration rate) were collected following each experimental condition. Participants with PD were unable to hold their breath for as long as normal controls; however, this finding was not significant, potentially due to a small sample size. Significant reductions in both physiological and cognitive symptoms of panic were noted in the clinical group following the CFI task. As hypothesized, the CFI task exerted demonstrable anxiolytic effects in the clinical group in this study by reducing heart rate significantly and lessening self-reported symptoms of anxiety and panic. This outcome demonstrates the promise of the CFI task for clinical applications.

14.
Int Med Case Rep J ; 14: 675-681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602825

RESUMEN

BACKGROUND: Successful cardiopulmonary resuscitation after drowning or avalanche is often attributed to hypothermia-induced decrease in metabolism, which adapts the oxygen demand to the amount supplied under cardiac compression. Four decades ago, we speculated if oxygen-sparing mechanisms like those found in marine mammals, may improve cerebral oxygenation during acute airway blockade in humans. We investigated hemodynamic changes during steady state ergometer cycling with intermittent periods of apnea and face immersion (AFI) in ice-cold water. During AFI, heart rate (HR) dropped by 58% whereas average blood velocity (ABV) determined by means of a Doppler ultrasound velocity meter (UNIDOP University of Oslo, Oslo, Norway) fell by 85% in the radial artery and rose by 67% in the vertebral artery. Similar changes occured in radial artery ABV, albeit more slowly, when the test subject only held his breath while cycling. When he breathed via a snorkel during face immersion, HR remained unchanged while radial artery ABV fell transiently and subsequently returned to its pre-immersion level. These findings later were confirmed by other investigators. Moreover, a recent study revealed that the seal even has a system for selective brain cooling during the dive. CONCLUSION: Our research has confirmed prioritized cerebral circulation during AFI in cold water. We hypothesize that these changes may improve brain oxygenation due both to greater blood flow and possibly also to faster brain cooling, as demonstrated in diving seals.

15.
Front Physiol ; 12: 731633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658915

RESUMEN

During breath holding after face immersion there develops an urge to breathe. The point that would initiate the termination of the breath hold, the "physiological breaking point," is thought to be primarily due to changes in blood gases. However, we theorized that other factors, such as lung volume, also contributes significantly to terminating breath holds during face immersion. Accordingly, nine naïve subjects (controls) and seven underwater hockey players (divers) voluntarily initiated face immersions in room temperature water at Total Lung Capacity (TLC) and Functional Residual Capacity (FRC) after pre-breathing air, 100% O2, 15% O2 / 85% N2, or 5% CO2 / 95% O2. Heart rate (HR), arterial blood pressure (BP), end-tidal CO2 (etCO2), and breath hold durations (BHD) were monitored during all face immersions. The decrease in HR and increase in BP were not significantly different at the two lung volumes, although the increase in BP was usually greater at FRC. BHD was significantly longer at TLC (54 ± 2 s) than at FRC (30 ± 2 s). Also, with each pre-breathed gas BHD was always longer at TLC. We found no consistent etCO2 at which the breath holding terminated. BDHs were significantly longer in divers than in controls. We suggest that during breath holding with face immersion high lung volume acts directly within the brainstem to actively delay the attainment of the physiological breaking point, rather than acting indirectly as a sink to produce a slower build-up of PCO2.

16.
Front Physiol ; 12: 712629, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366898

RESUMEN

Introduction: Acute apnea evokes bradycardia and peripheral vasoconstriction in order to conserve oxygen, which is more pronounced with face immersion. This response is contrary to the tachycardia and increased blood flow to muscle tissue related to the higher oxygen consumption during exercise. The aim of this study was to investigate cardiovascular and metabolic responses of dynamic dry apnea (DRA) and face immersed apnea (FIA). Methods: Ten female volunteers (17.1 ± 0.6 years old) naive to breath-hold-related sports, performed a series of seven dynamic 30 s breath-holds while cycling at 25% of their peak power output. This was performed in two separate conditions in a randomized order: FIA (15°C) and DRA. Heart rate and muscle tissue oxygenation through near-infrared spectroscopy were continuously measured to determine oxygenated (m[O2Hb]) and deoxygenated hemoglobin concentration (m[HHb]) and tissue oxygenation index (mTOI). Capillary blood lactate was measured 1 min after the first, third, fifth, and seventh breath-hold. Results: Average duration of the seven breath-holds did not differ between conditions (25.3 s ± 1.4 s, p = 0.231). The apnea-induced bradycardia was stronger with FIA (from 134 ± 4 to 85 ± 3 bpm) than DRA (from 134 ± 4 to 100 ± 5 bpm, p < 0.001). mTOI decreased significantly from 69.9 ± 0.9% to 63.0 ± 1.3% (p < 0.001) which is reflected in a steady decrease in m[O2Hb] (p < 0.001) and concomitant increase in m[HHb] (p = 0.001). However, this was similar in both conditions (0.121 < p < 0.542). Lactate was lower after the first apnea with FIA compared to DRA (p = 0.038), while no differences were observed in the other breath-holds. Conclusion: Our data show strong decreases in heart rate and muscle tissue oxygenation during dynamic apneas. A stronger bradycardia was observed in FIA, while muscle oxygenation was not different, suggesting that FIA did not influence muscle oxygenation. An order of mechanisms was observed in which, after an initial tachycardia, heart rate starts to decrease after muscle tissue deoxygenation occurs, suggesting a role of peripheral vasoconstriction in the apnea-induced bradycardia. The apnea-induced increase in lactate was lower in FIA during the first apnea, probably caused by the stronger bradycardia.

17.
Respir Physiol Neurobiol ; 293: 103721, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34153544

RESUMEN

PURPOSE: The present study aimed to measure diving response, CO2 sensitivity and forced vital capacity in male and female breath-hold divers (BHDs), and to determine their effect on breath-hold diving performance. METHODS: This study included 8 non-divers (NDs, 4 males and 4 females) and 15 BHDs (7 males and 8 females). For NDs, diving response was measured during breath-holding with facial immersion, whereas for BHDs CO2 sensitivity was also measured. RESULTS: Compared to NDs, BHDs showed a prominent diving response. In BHDs, no statistically significant sex differences were observed in diving response and CO2 sensitivity. Furthermore, a positive correlation was found between performance and the % forced vital capacity in BHDs. CONCLUSION: It was suggested that % forced vital capacity contributed more significantly to performance than diving response and CO2 sensitivity. Furthermore, the higher performance of male divers compared to female divers may be due to the % forced vital capacity rather than the diving response and CO2 sensitivity.


Asunto(s)
Rendimiento Atlético/fisiología , Contencion de la Respiración , Buceo/fisiología , Capacidad Vital/fisiología , Adulto , Femenino , Humanos , Masculino , Caracteres Sexuales
18.
Front Physiol ; 12: 649319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897457

RESUMEN

INTRODUCTION: Technical diving is very popular in Finland throughout the year despite diving conditions being challenging, especially due to arctic water and poor visibility. Cold water, immersion, submersion, hyperoxia, as well as psychological and physiological stress, all have an effect on the autonomic nervous system (ANS). MATERIALS AND METHODS: To evaluate divers' ANS responses, short-term (5 min) heart rate variability (HRV) during dives in 2-4°C water was measured. HRV resting values were evaluated from separate measurements before and after the dives. Twenty-six experienced closed circuit rebreather (CCR) divers performed an identical 45-meter decompression dive with a non-physical task requiring concentration at the bottom depth. RESULTS: Activity of the ANS branches was evaluated with the parasympathetic (PNS) and sympathetic (SNS) indexes of the Kubios HRV Standard program. Compared to resting values, PNS activity decreased significantly on immersion with face out of water. From immersion, it increased significantly with facial immersion, just before decompression and just before surfacing. Compared to resting values, SNS activity increased significantly on immersion with face out of water. Face in water and submersion measures did not differ from the immersion measure. After these measurements, SNS activity decreased significantly over time. CONCLUSION: Our study indicates that the trigeminocardiac part of the diving reflex causes the strong initial PNS activation at the beginning of the dive but the reaction seems to decrease quickly. After this initial activation, cold seemed to be the most prominent promoter of PNS activity - not pressure. Also, our study showed a concurrent increase in both SNS and PNS branches, which has been associated with an elevated risk for arrhythmia. Therefore, we recommend a short adaptation phase at the beginning of cold-water diving before physical activity.

19.
Exp Physiol ; 106(1): 160-174, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32893898

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the relative contribution of a putative tonic splenic contraction to the haematological acclimatization process during high altitude ascent in native lowlanders? What is the main finding and its importance? Spleen volume decreased by -14.3% (-15.2 ml) per 1000 m ascent, with an attenuated apnoea-induced [Hb] increase, attesting to a tonic splenic contraction during high altitude ascent. The [Hb]-enhancing function of splenic contraction may contribute to restoring oxygen content early in the acclimatization process at high altitude. ABSTRACT: Voluntary apnoea causes splenic contraction and reductions in heart rate (HR; bradycardia), and subsequent transient increases in haemoglobin concentration ([Hb]). Ascent to high altitude (HA) induces systemic hypoxia and reductions in oxygen saturation ( SpO2 ), which may cause tonic splenic contraction, which may contribute to haematological acclimatization associated with HA ascent. We measured resting cardiorespiratory variables (HR, SpO2 , [Hb]) and resting splenic volume (via ultrasound) during incremental ascent from 1400 m (day 0) to 3440 m (day 3), 4240 m (day 7) and 5160 m (day 10) in non-acclimatized native lowlanders during assent to HA in the Nepal Himalaya. In addition, apnoea-induced responses in HR, SpO2 and splenic volume were measured before and after two separate voluntary maximal apnoeas (A1-A2) at 1400, 3440 and 4240 m. Resting spleen volume decreased -14.3% (-15.2 ml) per 1000 m with ascent, from 140 ± 41 ml (1400 m) to 108 ± 28 ml (3440 m; P > 0.99), 94 ± 22 ml (4240 m; P = 0.009) and 84 ± 28 ml (5160 m; P = 0.029), with concomitant increases in [Hb] from 125 ± 18.3 g l-1 (1400 m) to 128 ± 10.4 g l-1 (3440 m), 138.8 ± 12.7 g l-1 (4240 m) and 157.5 ± 8 g l-1 (5160 m; P = 0.021). Apnoea-induced splenic contraction was 50 ± 15 ml (1400 m), 44 ± 17 ml (3440 m; P > 0.99) and 26 ± 8 ml (4240 m; P = 0.002), but was not consistently associated with increases in [Hb]. The apnoea-induced bradycardia was more pronounced at 3440 m (A1: P = 0.04; A2: P = 0.094) and at 4240 m (A1: P = 0.037 A2: P = 0.006) compared to values at 1400 m. We conclude that hypoxia-induced splenic contraction at rest (a) may contribute to restoring arterial oxygen content through its [Hb]-enhancing contractile function and (b) eliminates further apnoea-induced [Hb] increases in hypoxia. We suggest that tonic splenic contraction may contribute to haematological acclimatization early in HA ascent in humans.


Asunto(s)
Altitud , Apnea/fisiopatología , Contracción Muscular/fisiología , Saturación de Oxígeno/fisiología , Aclimatación/fisiología , Adulto , Femenino , Humanos , Hipoxia/fisiopatología , Masculino , Consumo de Oxígeno/fisiología
20.
Exp Physiol ; 106(1): 338-349, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421235

RESUMEN

NEW FINDINGS: What is the central question of this study? Splenic contractions occur in response to apnoea-induced hypoxia with and without face immersion in water. However, the splenic responses to a series of static or dynamic apnoeas with whole-body water immersion in non-divers and elite breath-hold divers are unknown. What is the main finding and its importance? Static and dynamic apnoeas were equally effective in stimulating splenic contractions across non-divers and elite breath-hold divers. These findings demonstrate that the magnitude of the splenic response is largely dictated by the degree of the hypoxemic stress encountered during voluntary apnoeic epochs. ABSTRACT: Splenic contractions occur in response to apnoea-induced hypoxia with and without facial water immersion. However, the splenic responses to a series of static (STA) or dynamic (DYN) apnoeas with whole-body water immersion in non-divers (NDs) and elite breath-hold divers (EBHDs) are unknown. EBHD (n = 8), ND (n = 10) and control participants (n = 8) were recruited. EBHD and ND performed a series of five maximal DYN or STA on separate occasions. Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on splenic volume and haematology. Heart rate (HR) and peripheral oxygen saturation (SpO2 ) were monitored for 30 s after each apnoea. Pre- and post-apnoeic splenic volumes were quantified ultrasonically, and blood samples were drawn for haematology. For EBHD and ND end-apnoeic HR was higher (P < 0.001) and SpO2 was lower in DYN (P = 0.024) versus STA. EBHD attained lower end-apnoeic SpO2 during DYN and STA than NDs (P < 0.001). Splenic contractions occurred following DYN (EBHD, -47 ± 6%; ND, -37 ± 4%; P < 0.001) and STA (EBHD, -26 ± 4%; ND, -26 ± 8%; P < 0.01). DYN-associated splenic contractions were greater than STA in EBHD only (P = 0.042). Haemoglobin concentrations were higher following DYN only (EBHD, +5 ± 8g/L  , +4 ± 2%; ND, +8 ± 3 g/L , +4.9 ± 3%; P = 0.019). Haematocrit remained unchanged after each protocol. There were no between group differences in post-apnoeic splenic volume or haematology. In both groups, splenic contractions occurred in response to STA and DYN when combined with whole-body immersion. DYN apnoeas, were effective at increasing haemoglobin concentrations but not STA apnoeas. Thus, the magnitude of the splenic response relates to the hypoxemic stress encountered during apnoeic epochs.


Asunto(s)
Apnea/fisiopatología , Buceo/fisiología , Hipoxia/fisiopatología , Saturación de Oxígeno/fisiología , Agua/metabolismo , Contencion de la Respiración , Frecuencia Cardíaca/fisiología , Humanos , Oxígeno/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA