Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19239, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164363

RESUMEN

The geometric features and operational parameters of rotary blades on rotary tillers significantly impact their performance characteristics. The sweepback angle is a geometric feature of the 'L'-shaped rotary blade that has remained unexplored in previous studies. This study aimed to analyze the effect of geometrical and operational parameters on the performance dynamics of the 'L'-shaped rotary blade. The investigation was conducted using the discrete element method (DEM) and further validated through experiments conducted in a soil bin. The simulation experiment was conducted by dividing the particle bed into horizontal particle zones. The effect of the geometrical (sweepback angle) and operational parameters (forward speed, rotational speed, and depth) on the power requirement, disturbance intensity, and mixing index was studied. The novel method was adopted to determine the mixing capability of rotary blades in terms of sub-domain mixing index (SMI) and overall mixing index (OMI). The results revealed that the power requirements for a sweepback angle of 18° were 26.39% and 16.50% lower than those for sweepback angles of 6° and 12°, respectively. The sweepback angle tends to have the least effect on the overall mixing index compared to operational parameters. The average particle velocity decreased by 22.19% and 29.60% with sweepback angles of 12° and 18°, respectively, compared to the sweepback angle of 6°. The relative error during the experiment varied between 1.29% and 13.51%. It was concluded that the sweepback angle was found to be a feasible option for reducing the power requirement with good mixing indices.

2.
Front Plant Sci ; 15: 1362125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486855

RESUMEN

The presence of burrowing mammals can have extensive effects on plants and soils, creating bare soil patches in alpine meadows and potentially altering plant-soil carbon (C) and nitrogen (N). This study focuses on the plateau pika (Ochotona curzoniae) to examine the responses of plant-soil C and N to a small burrowing mammal from quadrat scale to plot scale. The density of active burrow entrances in disturbed plots was used as an indicator of the disturbance intensity of plateau pikas. The study found that the below-ground biomass (BGB) and its C and N, as well as soil C and N concentrations were significantly lower in bare soil areas than in vegetated areas and undisturbed plots. This shows that the quadrat scale limited the estimation of the C and N sequestration potential. Therefore, further research on the plot scale found that the disturbance by plateau pika significantly reduced plant biomass and BGB carbon stock. However, plateau pika did not affect soil C and N stocks or ecosystem C and N stocks. These findings suggest the bare soil patches formed by plateau pika caused plant and soil heterogeneity but had a trade-off effect on plant-soil C and N stocks at the plot scale. Nevertheless, moderate disturbance intensity increased the C and N sequestration potential in grassland ecosystems. These results provide a possible way to estimate how disturbance by small burrowing mammals affects C and N cycling in grassland ecosystems while accurately assessing the effects of small burrowing mammal densities on C and N in grassland ecosystems.

3.
Glob Chang Biol ; 29(13): 3601-3621, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36997337

RESUMEN

Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha-1 year-1 during the first 20 years. Furthermore, the positive effect of surrounding forest cover was evident for both AGB and its recovery towards undisturbed levels, as well as for species richness. There was a negative effect of forest accessibility on the recovery of species composition towards undisturbed levels. Moving forward, we recommend that forest-based climate change mitigation endeavours consider forest disturbance through the integration of forest inventory data with remote sensing methods.


Los bosques amazónicos son reservorios y sumideros de carbono, contribuyendo a la mitigación del cambio climático. Si bien experimentan perturbaciones, el efecto de estas en la biomasa y biodiversidad a través del tiempo no ha sido evaluado a gran escala. En este estudio, evaluamos el grado de perturbación forestal reciente en la Amazonía peruana y los efectos de las perturbaciones, condiciones ambientales y actividad antrópica sobre la biomasa y la biodiversidad en bosques perturbados. Los datos de biomasa aérea y riqueza de especies forestales provenientes de 1,840 subparcelas del Inventario Nacional Forestal y de Fauna Silvestre (INFFS) se analizaron en conjunto con la información de detección de cambios de cobertura forestal derivadas de perturbaciones detectadas a partir de series de tiempo de índices de diferencia de humedad normalizados (NDMI) a partir de imágenes Landsat. Nuestros resultados muestran un claro efecto negativo de la intensidad de las perturbaciones sobre la riqueza de especies arbóreas. Este efecto también fue observado en los valores de recuperación de biomasa aérea y riqueza de especies arbóreas hacia niveles no perturbados, así como en la recuperación de la composición florística. El tiempo transcurrido desde la perturbación tuvo un efecto mayor sobre la biomasa aérea que sobre la riqueza de especies. Mientras el tiempo desde una perturbación forestal tuvo un efecto positivo sobre la biomasa área, se observó un pequeño efecto negativo sobre la riqueza de especies. Estimamos que aproximadamente el 15% de los bosques en la Amazonía peruana han experimentado una perturbación al menos una vez desde 1984, y que, tras esta, han aumentado en biomasa aérea en una tasa de 4.7 Mg ha−1 año−1 durante los primeros 20 años posteriores al evento de perturbación. Además, el efecto positivo de la cubierta forestal circundante fue evidente tanto para la biomasa aérea como para su recuperación hacia niveles no perturbados, así como para los valores de riqueza de especies. La accesibilidad a bosques tuvo un efecto negativo en la recuperación de la composición de especies hacia niveles no perturbados. Recomendamos que los esfuerzos de mitigación de cambio climático basados en bosques tengan en cuenta las perturbaciones forestales mediante el análisis integrado de información de inventarios forestales con métodos de teledetección.


Asunto(s)
Biodiversidad , Clima Tropical , Humanos , Perú , Biomasa , Brasil
4.
Plants (Basel) ; 11(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079648

RESUMEN

Disturbance by small burrowing herbivores often has an impact on plant aboveground biomass of grassland because it makes grasslands into a mosaic of discrete vegetated surfaces and bare soil patches. This study focuses on the plateau pika (Ochotona curzoniae) to investigate the effect of the disturbance by a small burrowing herbivore on plant aboveground biomass through upscaling the quadrat scale to the plot scale across five sites. This study showed that the plateau pika disturbance reduced sedge biomass and increased forb biomass. In contrast, they did not affect plant community biomass, grass biomass and legume biomass at the quadrat scale across the five sites. At the plot scale, that is, when the bare soil patches with a lack of plants were considered, plateau pika disturbance induced lower aboveground biomass of the plant community, sedge and legumes, while it had no relationship with grass biomass and forb biomass. As the disturbance intensity increased, the aboveground biomass of the plant community and sedge decreased, whereas the grass biomass showed a hump-shaped trend. These results indicate that plateau pika disturbance might be not beneficial to alpine meadows given the aboveground biomass of the plant community at the plot scale. In contrast, the intermediate disturbance intensity improves the grazing quality of alpine meadows through the higher grass biomass. The findings of this study imply that the plot scale is better than the quadrat scale to investigate the influence of the disturbance by a small burrowing herbivore on the plant aboveground biomass, and that management of a small burrowing herbivore needs to consider its disturbance intensity.

5.
Huan Jing Ke Xue ; 43(6): 3168-3176, 2022 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-35686786

RESUMEN

Taking Taihu Lake as the research object, for the aged polystyrene microplastics (PSMPs), the influence of hydraulic disturbance intensity on the migration process of PSMPs between mud and water phases was discussed, and the morphology and elements of PSMPs were analyzed using microscopic characterization methods including FTIR and SEM-EDS, as was done for characterization. The results showed that under disturbance conditions (55 r·min-1 and 120 r·min-1), the suspended solids (SS) and PSMPs in the overlying water were higher than those in the control experiment. This was due to the fact that the PSMPs were affected by buoyancy and reunited on the water surface under undisturbed conditions. Under low-intensity (55 r·min-1) disturbances, SS and PSMPs in the overlying water were (264.67±16.01) mg·L-1 and (239.67±6.51) n·mL-1, respectively, and (120 r·min-1) under high intensity. Under disturbance, the SS and PSMPs in the overlying water were (264.67±16.01) mg·L-1 and (239.67±6.51) n·mL-1, respectively. In the bottom mud, PSMPs were (491.00±23.46) mg·L-1 and 2.00 n·mL-1, respectively. Additionally, according to the SEM-EDS analysis, the surface of PSMPs had sediment elements (Si, etc.), which showed that it was easier to promote the adsorption of PSMPs by suspended solids under high strength. The abundance of PSMPs in the sediments also confirmed that the greater the intensity of the disturbance, the easier it was to promote the migration of PSMPs to the sediments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Plásticos , Poliestirenos , Agua , Contaminantes Químicos del Agua/análisis
6.
Ecol Evol ; 12(3): e8640, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342553

RESUMEN

A field experiment quantifies the impacts of two external disturbances (mowing-simulated grazing and number of pika) on aboveground biomass (AGB) in the Yellow River Source Zone from 2018 to 2020. AGB was estimated from drone images for 27 plots subject to three levels of each disturbance (none, moderate, and severe). The three mowing severities bear a close relationship with AGB and its annual change. The effects of pika disturbance on AGB change were overwhelmed by the significantly different AGB at different mowing severities (-.471 < r < -.368), but can still be identified by inspecting each mowing intensity (-.884 < r < -.626). The impact of severe mowing on AGB loss was more profound than that of severe pika disturbance in heavily disturbed plots, and the joint effects of both severe disturbances had the most impacts on AGB loss. However, pika disturbance made little difference to AGB change in the moderate and non-mowed plots. Mowing intensity weakens the relationship between pika population and AGB change, but pika disturbance hardly affects the relationship between mowing severity and AGB change. The effects of both disturbances on AGB were further complexified by the change in monthly mean temperature. Results indicate that reducing mowing intensity is more effective than controlling pika population in efforts to achieve sustainable grazing of heavily disturbed grassland.

7.
Front Plant Sci ; 12: 771058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804104

RESUMEN

Herbivory is one of the important factors that influence spatial heterogeneity of vegetation in grasslands. In this study, we focused on plateau pika (Ochotona curzoniae) to investigate the effects of the presence of small semi-fossorial herbivores and their disturbance intensity on the spatial heterogeneity of vegetation in alpine meadows across three sites in the Qinghai-Tibetan Plateau. A random stratified paired sampling method was used to collect vegetation data, and plant species richness at both fine and coarse scales were used to estimate the spatial heterogeneity of vegetation. This study showed that the presence of plateau pikas led to higher spatial heterogeneity of vegetation in alpine meadows, which increased linearly as the disturbance intensities of plateau pikas increased. The findings of this study demonstrate that small semi-fossorial herbivores have an important impact on the spatial heterogeneity of vegetation, and present a possible approach for estimating the effect of the presence of a small semi-fossorial herbivore and its disturbance intensity on the spatial heterogeneity of vegetation in grasslands.

8.
Sci Total Environ ; 748: 142381, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33113676

RESUMEN

Extensive, progressive rock emergence causes localized variations in soil biogeochemical and microbial properties that may influence the capacity for the regeneration of degraded karst ecosystems. It is likely that karst ecosystem recovery relies on the persistence of soil functions at the microbial scale, and we aimed to explored the role of interactions between soil bacterial taxa and identify keystone species that deliver key biogeochemical functions, i.e. carbon (C) and nutrient (nitrogen, N and phosphorus, P) cycling. We applied high-throughput sequencing and phylogenetic molecular ecological network approaches to topsoils sampled at rock-soil interfaces and adjacent bulk soil along an established gradient of land-use intensity in the Chinese Karst Critical Zone Observatory. Bacterial α-diversity was greater under increased perturbation and at the rock-soil interface compared to bulk soils under intensive cultivation. However, bacterial ecological networks were less intricate and connected fewer keystone taxa as human disturbance increased and at the rock-soil interface. Co-occurrence within the bacterial community in natural primary forest soils was 13% larger than cultivated soils. The relative abundances of keystone taxa Acidobacteria, Bacteroidetes and Chloroflexi increased with land-use intensity, while Proteobacteria, Actinobacteria and Verrucomicrobia decreased by up to 6%. In general, Bacteroidetes, Verrucomicrobia and Chlorobi were related to C-cycling, Proteobacteria, Actinobacteria and Chloroflexi were related to N-cycling, and Actinobacteria and Nitrospirae were related to both N- and P-cycling. Proteobacteria and Chlorobi affected C-cycling and multiple functionality indexes in the abandoned land. We conclude that increasing land-use intensity changed the soil bacterial community structure and decreased bacterial interactions. However, increases in α-diversity at the rock-soil interface in cultivated soils indicated that major soil functions related to biogeochemical cycling were maintained within keystone taxa in this microenvironment. Our study provides foundations to test the success of different regeneration practices in restoring soil microbial diversity and the multifunctionality of karst ecosystems.


Asunto(s)
Ecosistema , Suelo , Bacterias/genética , Filogenia , Microbiología del Suelo
9.
Ecol Lett ; 23(6): 1014-1023, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32282125

RESUMEN

Ecological pyramids represent the distribution of abundance and biomass of living organisms across body-sizes. Our understanding of their expected shape relies on the assumption of invariant steady-state conditions. However, most of the world's ecosystems experience disturbances that keep them far from such a steady state. Here, using the allometric scaling between population growth rate and body-size, we predict the response of size-abundance pyramids within a trophic guild to any combination of disturbance frequency and intensity affecting all species in a similar way. We show that disturbances narrow the base of size-abundance pyramids, lower their height and decrease total community biomass in a nonlinear way. An experimental test using microbial communities demonstrates that the model captures well the effect of disturbances on empirical pyramids. Overall, we demonstrate both theoretically and experimentally how disturbances that are not size-selective can nonetheless have disproportionate impacts on large species.


Asunto(s)
Ecosistema , Cadena Alimentaria , Biomasa , Tamaño Corporal
10.
Ecol Evol ; 9(9): 5362-5371, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31110685

RESUMEN

Decalobanthus boisianus is a native plant of Hainan Island, China, which has caused considerable damage to tropical forest ecosystems in recent decades. Understanding the genetic diversity and structure of this species can facilitate uncovering the molecular mechanism of its invasive ability. Here, we collected 77 individuals of D. boisianus spanning 8 distribution areas with a gradient of human disturbance intensity (i.e., low, moderate, and high disturbance intensity groups) to assess patterns of genetic diversity and structure using inter simple sequence repeat (ISSR) markers. We found that a total of 220 loci were scored with 13 primers using ISSR methods, and that 198 loci were polymorphic. The genetic diversity of D. boisianus among these eight forests decreased with increasing human disturbance intensity. Over 70% of the total genetic variation was present within populations, while less than 30% of variation was found among populations. There was a high gene flow (1.27) among them due to a lack of effective geographic barriers. The mean Nei's genetic distance of D. boisianus populations was found to be relatively small (i.e., 0.07), and the average genetic similarity of the eight populations was high (i.e., 0.93). Our findings indicate that the genetic diversity of D. boisianus correlated to human disturbance density, and that D. boisianus populations in Hainan Island have frequent gene exchange. We suggest that reduce deforestation to decrease human disturbance may be a good way to prevent the invasion of D. boisianus.

11.
Ecol Lett ; 22(4): 674-684, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30734447

RESUMEN

Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species-specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi-dimensional assessments are still to be recommended.


Asunto(s)
Ecología , Ecosistema , Dinámica Poblacional
12.
Ying Yong Sheng Tai Xue Bao ; 29(4): 1283-1290, 2018 Apr.
Artículo en Chino | MEDLINE | ID: mdl-29726239

RESUMEN

The experiment was conducted in the plots that had been enclosed for nearly 20 years in the hilly Loess Plateau region. The effects of trampling disturbance on the biological soil crust (biocrust) coverage, soil organic carbon (SOC), soil easily oxidizable carbon (SEOC), SOC mineralization amount and mineralization rate were investigated. The biocrust SOC mineralization potential after disturbance in different soil layers were simulated by a first-order kinetic equation. The results showed that the coverage of cyanobacteria biocrust and moss biocrust significantly decreased with the increases of disturbance intensity. Compared to no disturbance, the cyanobacteria coverage declined by 264%-339% and moss coverage declined by 46%-127%. Compared to no disturbance, SOC content in biocrust layer significantly decreased by 211%-300%. No significant difference was found among the five disturbance intensities. Disturbance increased SEOC content in biocrust layer, and the variation amounted to 1.5-3.4 g·kg-1, with 30%, 40% and 50% distur-bance differed significantly to no disturbance. Disturbance significantly increased biocrust SOC mineralization cumulative amount. However, SOC mineralization rate did not show any significant change. The SOC mineralization cumulative amount under 40% disturbance intensity increased by 77% compared to that under no disturbance. Disturbance significantly increased SOC mineralization potential in biocrust layer, but with no influence in 0-2 cm and 2-5 cm soil layers. The 40% disturbance intensity significantly increased SOC mineralization potential by 4.7 g·kg-1. The results of principal component analysis showed that SOC, SEOC, SMC and mineralization rate explained 76.7% of the variation of SOC mineralization potential in biocrust layer. Disturbance might be a main factor driving the increases of biocrust SOC mineralization potential in this area.


Asunto(s)
Carbono/química , Microbiología del Suelo , Suelo/química , Briófitas , China , Cianobacterias
13.
J Environ Manage ; 205: 308-318, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29031134

RESUMEN

The positive relationships between biodiversity and aboveground biomass are important for biodiversity conservation and greater ecosystem functioning and services that humans depend on. However, the interaction effects of plant coverage and biodiversity on aboveground biomass across plant growth forms (shrubs, forbs and grasses) in natural rangelands are poorly studied. Here, we hypothesized that, while accounting for environmental factors and disturbance intensities, the positive relationships between plant coverage, biodiversity, and aboveground biomass are ubiquitous across plant growth forms in natural rangelands. We applied structural equation models (SEMs) using data from 735 quadrats across 35 study sites in semi-steppe rangelands in Iran. The combination of plant coverage and species richness rather than Shannon's diversity or species diversity (a latent variable of species richness and evenness) substantially enhance aboveground biomass across plant growth forms. In all selected SEMs, plant coverage had a strong positive direct effect on aboveground biomass (ß = 0.72 for shrubs, 0.84 for forbs and 0.80 for grasses), followed by a positive effect of species richness (ß = 0.26 for shrubs, 0.05 for forbs and 0.09 for grasses), and topographic factors. Disturbance intensity had a negative effect on plant coverage, whereas it had a variable effect on species richness across plant growth forms. Plant coverage had a strong positive total effect on aboveground biomass (ß = 0.84 for shrubs, 0.88 for forbs, and 0.85 for grasses), followed by a positive effect of species richness, and a negative effect of disturbance intensity across plant growth forms. Our results shed light on the management of rangelands that is high plant coverage can significantly improve species richness and aboveground biomass across plant growth forms. We also found that high disturbance intensity due to heavy grazing has a strong negative effect on plant coverage rather than species richness in semi-steppe rangelands. This study suggests that proper grazing systems (e.g. rotational system) based on carrying capacity and stocking rate of a rangeland may be helpful for biodiversity conservation, better grazing of livestock, improvement of plant coverage and enhancement of aboveground biomass.


Asunto(s)
Biodiversidad , Desarrollo de la Planta , Biomasa , Ecosistema , Irán , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA