Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161313

RESUMEN

Climate change has profound impacts on forest ecosystem dynamics and could lead to the emergence of novel ecosystems via changes in species composition, forest structure, and potentially a complete loss of tree cover. Disturbances fundamentally shape those dynamics: the prevailing disturbance regime of a region determines the inherent variability of a system, and its climate-mediated change could accelerate forest transformation. We used the individual-based forest landscape and disturbance model iLand to investigate the resilience of three protected temperate forest landscapes on three continents-selected to represent a gradient from low to high disturbance activity-to changing climate and disturbance regimes. In scenarios of sustained strong global warming, natural disturbances increased across all landscapes regardless of projected changes in precipitation (up to a sevenfold increase in disturbance rate over the 180-year simulation period). Forests in landscapes with historically high disturbance activity had a higher chance of remaining resilient in the future, retaining their structure and composition within the range of variability inherent to the system. However, the risk of regime shift and forest loss was also highest in these systems, suggesting forests may be vulnerable to abrupt change beyond a threshold of increasing disturbance activity. Resilience generally decreased with increasing severity of climate change. Novelty in tree species composition was more common than novelty in forest structure, especially under dry climate scenarios. Forests close to the upper tree line experienced high novelty in structure across all three study systems. Our results highlight common patterns and processes of forest change, while also underlining the diverse and context-specific responses of temperate forest landscapes to climate change. Understanding past and future disturbance regimes can anticipate the magnitude and direction of forest change. Yet, even across a broad gradient of disturbance activity, we conclude that climate change mitigation is the most effective means of maintaining forest resilience.


Asunto(s)
Cambio Climático , Bosques , Árboles , Modelos Teóricos , Conservación de los Recursos Naturales
2.
J Phycol ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072751

RESUMEN

The success and cost-effectiveness of kelp forest restoration hinges on understanding the colonization ecology of kelps, particularly with respect to dispersal potential, recruitment success, and subsequent establishment. To gain needed insight into these processes we examined spatial patterns and temporal trajectories of the colonization of a large artificial reef by the giant kelp Macrocystis pyrifera. The 151 ha artificial reef complex was constructed in three phases over 21 years, enabling dispersal, recruitment, and subsequent establishment to be examined for a wide range of environmental conditions, dispersal distances, and source population sizes. Natural colonization of all phases of the artificial reef by giant kelp was rapid (within 1 year) and extended across the entire 7-km-long reef complex. Colonization density declined with distance from the nearest source population, but only during the first phase when the distance from the nearest source population was ≤3.5 km. Despite this decline, recruitment on artificial reef modules farthest from the source population was sufficient to produce dense stands of kelp within a couple of years. Experimental outplanting of the artificial reef with laboratory-reared kelp embryos was largely successful but proved unnecessary, as the standing biomass of kelp resulting from natural recruitment exceeded that observed on nearby natural reefs within 2-3 years of artificial reef construction for all three phases. Such high potential for natural colonization following disturbance has important implications for kelp forest restoration efforts that employ costly and logistically difficult methods to mimic this process by active seeding and transplanting.

3.
Ecol Evol ; 14(6): e11403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826158

RESUMEN

Understanding what regulates ecosystem functional responses to disturbance is essential in this era of global change. However, many pioneering and still influential disturbance-related theorie proposed by ecosystem ecologists were developed prior to rapid global change, and before tools and metrics were available to test them. In light of new knowledge and conceptual advances across biological disciplines, we present four disturbance ecology concepts that are particularly relevant to ecosystem ecologists new to the field: (a) the directionality of ecosystem functional response to disturbance; (b) functional thresholds; (c) disturbance-succession interactions; and (d) diversity-functional stability relationships. We discuss how knowledge, theory, and terminology developed by several biological disciplines, when integrated, can enhance how ecosystem ecologists analyze and interpret functional responses to disturbance. For example, when interpreting thresholds and disturbance-succession interactions, ecosystem ecologists should consider concurrent biotic regime change, non-linearity, and multiple response pathways, typically the theoretical and analytical domain of population and community ecologists. Similarly, the interpretation of ecosystem functional responses to disturbance requires analytical approaches that recognize disturbance can promote, inhibit, or fundamentally change ecosystem functions. We suggest that truly integrative approaches and knowledge are essential to advancing ecosystem functional responses to disturbance.

4.
Ecol Lett ; 27(3): e14393, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430049

RESUMEN

Long-term (press) disturbances like the climate crisis and other anthropogenic pressures are fundamentally altering ecosystems and their functions. Many critical ecosystem functions, such as biogeochemical cycling, are facilitated by microbial communities. Understanding the functional consequences of microbiome responses to press disturbances requires ongoing observations of the active populations that contribute to functions. This study leverages a 7-year time series of a 60-year-old coal seam fire (Centralia, Pennsylvania, USA) to examine the resilience of soil bacterial microbiomes to a press disturbance. Using 16S rRNA and 16S rRNA gene amplicon sequencing, we assessed the interannual dynamics of the active subset and the 'whole' bacterial community. Contrary to our hypothesis, the whole communities demonstrated greater resilience than active subsets, suggesting that inactive members contributed to overall structural resilience. Thus, in addition to selection mechanisms of active populations, perceived microbiome resilience is also supported by mechanisms of dispersal, persistence, and revival from the local dormant pool.


Asunto(s)
Microbiota , Resiliencia Psicológica , Suelo/química , ARN Ribosómico 16S/genética , Microbiología del Suelo , Bacterias/genética , Microbiota/fisiología
5.
Glob Chang Biol ; 30(1): e17067, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273562

RESUMEN

Climate change is increasing the frequency, intensity, and duration of extreme weather events across the globe. Understanding the capacity for ecological communities to withstand and recover from such events is critical. Typhoons are extreme weather events that are expected to broadly homogenize ecological dynamics through structural damage to vegetation and longer-term effects of salinization. Given their unpredictable nature, monitoring ecological responses to typhoons is challenging, particularly for mobile animals such as birds. Here, we report spatially variable ecological responses to typhoons across terrestrial landscapes. Using a high temporal resolution passive acoustic monitoring network across 24 sites on the subtropical island of Okinawa, Japan, we found that typhoons elicit divergent ecological responses among Okinawa's diverse terrestrial habitats, as indicated by increased spatial variability of biological sound production (biophony) and individual species detections. This suggests that soniferous communities are capable of a diversity of different responses to typhoons. That is, spatial insurance effects among local ecological communities provide resilience to typhoons at the landscape scale. Even though site-level typhoon impacts on soundscapes and bird detections were not particularly strong, monitoring at scale with high temporal resolution across a broad spatial extent nevertheless enabled detection of spatial heterogeneity in typhoon responses. Further, species-level responses mirrored those of acoustic indices, underscoring the utility of such indices for revealing insight into fundamental questions concerning disturbance and stability. Our findings demonstrate the significant potential of landscape-scale acoustic sensor networks to capture the understudied ecological impacts of unpredictable extreme weather events.


Asunto(s)
Tormentas Ciclónicas , Animales , Ecosistema , Cambio Climático , Aves/fisiología , Acústica
6.
Front Microbiol ; 14: 1176760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601344

RESUMEN

Up to 35% of global drylands have experienced degradation due to anthropogenic impacts, including physical disturbances like trampling and soil removal. These physical disturbances can result in the loss of soil communities known as biological soil crusts (biocrusts) and the important functions they provide, such as soil stability and fertility. The reestablishment of biocrust organisms after disturbance is determined by many factors, including propagule availability, climate, and vascular plant community structure. The role of these factors in natural recovery may be intensified by the extent (or size) of a disturbance. For example, large disturbances can result in reduced propagule availability or enhanced erosion, which impact both the dispersal and establishment of biocrust organisms on disturbed soils, leading to a slower natural recovery. To test how disturbance extent impacts biocrust's natural recovery, we installed four disturbance extents by completely removing biocrust from the mineral soil in plots ranging from 0.01 m2 to 1 m2 and measured productivity and erosion resistance. We found that small disturbance extents did not differ in chlorophyll a content, total exopolysaccharide content, or soil stability after 1.5 years of natural recovery. However, the concentration of glycocalyx exopolysaccharide was higher in the smallest disturbances after the recovery period. Our results indicate that disturbances <1 m2 in scale recover at similar rates, with soil stability returning to high levels in just a few years after severe disturbance. Our findings align with prior work on biocrust natural recovery in drylands and highlight the opportunity for future work to address (1) cyanobacteria, moss, and lichen propagule dispersal; (2) rates and mechanisms of biocrust succession; and (3) the role of wind or water in determining biocrust colonization patterns as compared to lateral growth.

7.
Ecol Lett ; 26(9): 1510-1522, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37353910

RESUMEN

Directly observing autotrophic biomass at ecologically relevant frequencies is difficult in many ecosystems, hampering our ability to predict productivity through time. Since disturbances can impart distinct reductions in river productivity through time by modifying underlying standing stocks of biomass, mechanistic models fit to productivity time series can infer underlying biomass dynamics. We incorporated biomass dynamics into a river ecosystem productivity model for six rivers to identify disturbance flow thresholds and understand the resilience of primary producers. The magnitude of flood necessary to disturb biomass and thereby reduce ecosystem productivity was consistently lower than the more commonly used disturbance flow threshold of the flood magnitude necessary to mobilize river bed sediment. The estimated daily maximum percent increase in biomass (a proxy for resilience) ranged from 5% to 42% across rivers. Our latent biomass model improves understanding of disturbance thresholds and recovery patterns of autotrophic biomass within river ecosystems.


Asunto(s)
Ecosistema , Ríos , Biomasa , Factores de Tiempo , Ciclo del Carbono
8.
Sci Total Environ ; 890: 163414, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37087020

RESUMEN

Large and severe wildfires, exacerbated by climate change and human behavior, are occurring more frequently in many forests across the western United States. While wildfire is a natural part of most terrestrial ecosystems, rapidly changing fire regimes have the potential to alter habitat beyond the adaptive capabilities of species. Spatial assessments of wildfire risks to species habitat may allow managers to pinpoint locations for management activities. To illustrate this, we spatially assessed wildfire risk within habitat that supports the nesting activity of the federally threatened northern spotted owl (Strix occidentalis caurina) in the California redwood coast ecoregion. To accomplish this, we built a scale-optimized ensemble nesting habitat suitability model and identified habitat with the highest wildfire hazard potential. Percent canopy cover at 100-m scale, slope at 400-m scale, and January precipitation at 800-m scale were the most influential environmental covariates for predicting northern spotted owl nesting habitat. Nearly 60% of nesting habitat was predicted to be at high or very high (>1986 index value) wildfire risks. We identified three areas in the Maple Creek Area of Humboldt County, Jackson State Demonstration Forest in Mendocino County, and Point Reyes National Seashore in Marin County, California with a high concentration of nesting habitat that are at a very high risk of experiencing high severity wildfires. We recommend these areas be targeted for future research to understand the impact of wildfire on northern spotted owl as well as management attention.


Asunto(s)
Sequoia , Estrigiformes , Incendios Forestales , Animales , Humanos , Ecosistema , Bosques , California
9.
Plants (Basel) ; 12(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050136

RESUMEN

Seed burial under wrack, mats of water-transported plant debris, can limit recruitment of seedlings in wetlands. In a greenhouse experiment, we studied the effects of wrack burial (0, 1, 2, 4, 8 cm depths) on germination and emergence of the macrophyte Iris pseudacorus, native to Europe, Mediterranean Basin, and western Asia, that has invaded wetlands in nearly every global ecozone. We recorded the percentages of germinating, senescent, and quiescent seeds and evaluated seedling establishment and growth relative to substrate environmental variables. Seedling emergence of I. pseudacorus was reduced from >80% in controls without burial to <40% even at minimal wrack depths of 1 cm. Few I. pseudacorus seedlings were able to emerge from wrack burial of up to 8 cm in depth. We also found greater numbers of both quiescent seeds and germinated seeds that did not emerge from wrack burial. Reduced seedling emergence and increased seed quiescence with wrack burial were primarily explained by a reduction in daily temperature variation within the substrate. No senescent seedlings were observed with any depth of wrack burial. In view of our results, the management of I. pseudacorus invasion will be a long-term challenge, requiring continued control due to persistent seeds in wrack-buried seed banks.

10.
Microb Ecol ; 85(3): 809-819, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36735065

RESUMEN

While it is now widely accepted that microorganisms provide essential functions in restoration ecology, the nature of relationships between microbial community assembly and ecosystem recovery remains unclear. There has been a longstanding challenge to decipher whether microorganisms facilitate or simply follow ecosystem recovery, and evidence for each is mixed at best. We propose that understanding microbial community assembly processes is critical to understanding the role of microorganisms during ecosystem restoration and thus optimizing management strategies. We examine how the connection between environment, community structure, and function is fundamentally underpinned by the processes governing community assembly of these microbial communities. We review important factors to consider in evaluating microbial community structure in the context of ecosystem recovery as revealed in studies of microbial succession: (1) variation in community assembly processes, (2) linkages to ecosystem function, and (3) measurable microbial community attributes. We seek to empower restoration ecology with microbial assembly and successional understandings that can generate actionable insights and vital contexts for ecosystem restoration efforts.


Asunto(s)
Ecosistema , Microbiota , Suelo/química , Ecología , Microbiología del Suelo
11.
Ecology ; 104(3): e3950, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484720

RESUMEN

The 1980 volcanic eruption of Mount St. Helens had profound impacts on the geology, hydrology, and ecology of its surrounding landscapes. Consequently, the event provided a unique opportunity to study ecological change over time in relation to abiotic factors. To better assess the role localized environmental conditions play in these larger processes, we have monitored micrometeorological conditions across six disturbance zones on Mount St. Helens created by the eruption. We deployed 823 environmental sensors at 191 sites from 1997 to 2022 to measure the temperature and relative humidity of aquatic (temperature only) and terrestrial habitats in these areas, collecting over 4.2 million measurements in total. Measurements were typically recorded every 30 min from late spring through mid-fall, with the exception being Spirit Lake, where temperatures have been measured hourly on a year-round basis since 2002. These data have been used to address two broad research questions: (1) how small-scale environmental conditions influence patterns of survivorship and/or establishment on Mount St. Helens post-eruption for a range of organisms, including plants, small mammals, birds, amphibians, arthropods, fish, and other aquatic biota, and (2) to quantify and compare these environmental conditions across different disturbance zones, which vary in disturbance type, intensity, and history of post-eruption secondary disturbances. Due to the repeatability of these measurements over many years, these data lend themselves to exploring the relationship between forest succession and microclimate, especially with respect to forest-dwelling organisms whose spread and demography are sensitive to temperature and relative humidity. In addition, this dataset could be used to investigate additional questions related to early succession, disturbance ecology, climate change, or volcano ecology. This dataset is available in the R data package MSHMicroMetR, which also includes an R Shiny data visualization and exploration tool. There is no copyright on the data; please cite this data paper Ecology when using these data.


Asunto(s)
Ecosistema , Bosques , Animales , Erupciones Volcánicas , Anfibios , Temperatura , Mamíferos
12.
Ecol Appl ; 32(5): e2587, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35333422

RESUMEN

Livestock grazing is an important management tool for biodiversity conservation in many native grasslands across the globe. Understanding how different grazing species interact with their environment is integral to achieving conservation goals. In the semiarid grasslands of Australia, grazing by sheep or cattle is used to manipulate vegetation structure to suit the habitat needs of a globally unique, critically endangered grassland bird, the plains-wanderer Pedionomus torquatus. However, there has been no investigation of whether sheep and cattle differ in their effects on plains-wanderer habitat and, therefore, it is unknown if these grazers are substitutable as a management tool. Using a grazing experiment in native grasslands over 3 years, we determined the effects of grazer type (sheep, cattle) on occurrence and vocal activity of plains-wanderer, vegetation structure and composition, and food availability. We also examined grazer effects on encounter rates of other grassland birds. Plains-wanderer breeding activity was inferred from vocalization rates captured by bioacoustic recorders. Spotlighting was used to measure encounter rates of other grassland birds. We found that different grazers altered the structure of the habitat. Grasslands grazed by cattle were typically more open, less variable, and lacked patches of dense vegetation relative to those grazed by sheep. Grazer type did not influence the likelihood of plains-wanderer occurrence, but it did interact with year of survey to affect breeding activity. The number of days with one or more calls significantly increased at sheep grazed sites in year-3, which coincided with enduring drought conditions. Similarly, grazer effects on encounter rate of all birds, bird species richness, and Australasian pipit Anthus novaeseelandiae were different between years. Dense vegetation specialists (such as stubble quail Coturnix pectoralis) were positively associated with grasslands grazed by sheep. As a habitat management tool, sheep or cattle grazing are useful when the goal is to support an open grassland structure for the plains-wanderer. However, their substitutability is likely to be dependent upon climate. We caution that a loss of dense vegetation in grasslands grazed by cattle during drought could limit the availability of optimal habitat for the plains-wanderer and habitat for other grassland birds.


Asunto(s)
Pradera , Passeriformes , Animales , Biodiversidad , Bovinos , Coturnix , Ecosistema , Ganado , Ovinos
13.
Ecol Appl ; 32(2): e2508, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34870359

RESUMEN

Invasive forest insects have significant direct impacts on forest ecosystems and they are also generating new risks, uncertainties, and opportunities for forest landowners. The growing prevalence and inexorable spread of invasive insects across the United States, combined with the fact that the majority of the nation's forests are controlled by thousands of autonomous private landowners, raises an important question: To what extent will private landowners alter their harvest practices in response to insect invasions? Using a quasi-experimental design, we conducted a causal analysis to investigate the influence of the highly impactful emerald ash borer (EAB) on (1) annual probability of harvest; (2) intensity of harvest; and (3) diameter of harvested trees, for both ash and non-ash species on private land throughout the Midwest and mid-Atlantic regions of the United States. We found that EAB detection had a negative impact on annual harvest probability and a positive impact on harvest intensity, resulting in a net increase in harvested biomass. Furthermore, our estimates suggest that EAB detection will influence private landowners to harvest greater quantities of ash, relative to non-ash species. We also found that harvested trees in EAB-infested areas had smaller diameters, on average, compared with those unaffected by EAB. These results can help policymakers, forest managers, and extension programs to anticipate and better advise landowners and managers about their options and the associated outcomes for forests.


Asunto(s)
Escarabajos , Fraxinus , Animales , Escarabajos/fisiología , Ecosistema , Insectos , Larva/fisiología
14.
Philos Trans R Soc Lond B Biol Sci ; 376(1839): 20200380, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34657463

RESUMEN

There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.


Asunto(s)
Ecosistema , El Niño Oscilación del Sur , Cambio Climático , Reproducción , Semillas
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1839): 20200384, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34657468

RESUMEN

The timing of seed production and release is highly relevant for successful plant reproduction. Ecological disturbances, if synchronized with reproductive effort, can increase the chances of seeds and seedlings to germinate and establish. This can be especially true under variable and synchronous seed production (masting). Several observational studies have reported worldwide evidence for co-occurrence of disturbances and seed bumper crops in forests. Here, we review the evidence for interaction between disturbances and masting in global plant communities; we highlight feedbacks between these two ecological processes and posit an evolutionary pathway leading to the selection of traits that allow trees to synchronize seed crops with disturbances. Finally, we highlight relevant questions to be tested on the functional and evolutionary relationship between disturbances and masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.


Asunto(s)
Reproducción , Árboles , Bosques , Semillas
16.
Ecol Lett ; 24(12): 2635-2647, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34536250

RESUMEN

Canopy disturbance explains liana abundance and distribution within tropical forests and thus may also explain the widespread pattern of increasing liana abundance; however, this hypothesis remains untested. We used a 10-year study (2007-2017) of 117,100 rooted lianas in an old-growth Panamanian forest to test whether local canopy disturbance explains increasing liana abundance. We found that liana density increased 29.2% and basal area 12.5%. The vast majority of these increases were associated with clonal stem proliferation following canopy disturbance, particularly in liana-dense, low-canopy gaps, which had far greater liana increases than did undisturbed forest. Lianas may be ecological niche constructors, arresting tree regeneration in gaps and thus creating a high-light environment that favours sustained liana proliferation. Our findings demonstrate that liana abundance is increasing rapidly and their ability to proliferate via copious clonal stem production in canopy gaps explains much of their increase in this and possibly other tropical forests.


Asunto(s)
Bosques , Clima Tropical , Ecosistema , Árboles
17.
Ecol Evol ; 11(13): 9110-9122, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34257947

RESUMEN

Volcanic eruptions are one of the largest natural disturbances and are followed by the establishment of novel plant and animal communities in terrestrial ecosystems. However, the role of pre-eruption vegetation in the establishment of arthropod communities after volcanic disturbances is currently unknown. Here, we asked whether the legacy of pre-eruption vegetation mediates the community structure of ground-dwelling arthropods after volcanic disturbances. The 2015 eruption in Kuchinoerabu-jima Island, southwest Japan, caused two types of disturbances [a pyroclastic flow and a lahar (i.e., mudflow)] in three types of forests (broad-leaved, black pine, and cedar). We hypothesized that pre-eruption vegetation would influence the community structure of ground-dwelling arthropods after the disturbance, and we expected that these effects from vegetation would be more prevalent for the less severe disturbances. The total abundance of ground-dwelling arthropods decreased more in the lahar than the pyroclastic flow, and arthropod species composition showed a greater change after the lahar. These findings suggest that the lahar disturbance was more severe than the pyroclastic disturbance. Contrary to expectations, the difference in the arthropod species composition among the vegetation types was greatest after the lahar. After the pyroclastic flow, leaf litter remained to some degree with all the vegetation types. After the lahar disturbance, however, although the litter in the cedar forests remained, the litter disappeared completely from broad-leaved and black pine forests. The disappearance of litter from these two forest types after the lahar may be responsible for the greater difference in arthropod species composition among the vegetation types. This study shows that the legacy effects of pre-eruption vegetation on terrestrial arthropod communities after volcanic disturbance were different depending on the type of disturbance. Focusing on the role of pre-eruption biotic factors would contribute to a better understanding of the recovery processes of terrestrial ecosystems after large natural disturbances.

18.
Sci Total Environ ; 784: 147053, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34088039

RESUMEN

Microphytobenthic communities play a significant role in nutrient modulation, sediment stabilization, and primary production in seagrass beds, which provide various ecosystem services. We hypothesized that microphytobenthic communities in sediments of chronically oil-exposed seagrass beds will exhibit increased resiliency to stressors associated with oil exposure as opposed to seagrass beds never exposed to oil spills. We prepared 14-liter seawater mesocosms, each containing a submersed macrophyte Ruppia maritima collected from the Chandeleur Islands, Louisiana, and Estero Bay, Florida. Mesocosms were initially exposed to 50% water-accommodated oil fractions (WAF) and subsequently diluted by 50% with daily artificial seawater exchanges over 8 days to simulate tidal dilution. High-throughput amplicon sequencing based on 23S rRNA gene targeting cyanobacteria and chloroplasts of eukaryotic microphytobenthos was conducted to assess the impact of oiling on microphytobenthic communities with additional assessment via microscopy. High-throughput sequencing in combination with traditional microscopic analysis provided a robust examination in which both methods roughly complemented each other. Distinct succession patterns were detected in benthic algal communities of chronically oil-exposed (Louisiana) versus unexposed (Florida) seagrass bed sediments. The impact of oiling in microphytobenthos across all samples showed that benthic diatoms dominated all algal communities with sample percentages ranging from 42 to 97%, followed by cyanobacteria (2 to 50%). It is noteworthy that drastic changes in microphytobenthic community structure in terms of the larger taxonomic level were not observed, rather change occurred at the phylotype level. These results were also confirmed by microscopy. Similarity percentages (SIMPER) analysis identified seven phylotypes (Cyanobacteria, Bacillariophyceae, and Mediophyceae) in the Louisiana samples and one phylotype (Bacillariophyceae) in the Florida samples that increased in relative sequence abundance after oil exposure. The detailed phylotype analysis identifying sentinel microphytobenthic indicators provides a base for future research on benthic microalgae response to ecosystem disturbance.


Asunto(s)
Contaminación por Petróleo , Ecosistema , Florida , Sedimentos Geológicos , Louisiana , Contaminación por Petróleo/análisis
19.
Ecol Appl ; 31(6): e02383, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34042236

RESUMEN

Infrequent, high-intensity disturbances can have profound impacts on forested landscapes, changing forest structure and altering relative species abundance. However, due to their rarity and the logistical challenges of directly observing such extreme events, both the spatial variability of disturbance intensity and the species-specific responses to this variability are poorly understood. We used observed patterns of mortality across a fire severity gradient following the 2009 Black Saturday fires in southeastern Australia to simultaneously estimate (1) species- and size-specific susceptibility to fire-induced mortality and (2) fire intensity. We found broad variation in patterns of fire susceptibility among the 10 tree species (five eucalypts and five non-eucalypts) sufficiently abundant for analysis. Among the eucalypts, Eucalyptus obliqua was the most resistant to fire-induced mortality, with trees of ~25 cm DBH having a 50% probability of surviving even the most intense fires. In contrast, E. regnans had 100% mortality across all size classes when subjected to high-intensity fire. Basal resprouting occurred in six of the study species and, when accounted for, fundamentally changed the mortality profile of these species, highlighting the importance of resprouting as an adaptation to fire in these landscapes. In particular, the two iconic cool temperate rainforest species (Nothofagus cunninghami and Atherosperma moschatum) were strong resprouters (~45% of individuals were able to resprout after being top-killed by fire). We also found evidence for compositional shifts in regeneration above threshold values of fire intensity in cool temperate rainforest and mixed forest sites, both of which have important conservation values within these landscapes. The observed patterns of species- and size-specific susceptibility to fire-induced mortality may be used to anticipate changes in forest structure and composition in the future. In addition, they may also help guide forest management strategies that reduce the length of time individual trees are exposed to potentially lethal fires, thereby increasing the resilience of these forests to future fires.


Asunto(s)
Eucalyptus , Incendios , Australia , Bosques , Especificidad de la Especie , Árboles
20.
Ecol Evol ; 11(24): 17762-17773, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003637

RESUMEN

Wind damage from cyclones can devastate the forest canopy, altering environmental conditions in the understory that affect seedling growth and plant community regeneration. To investigate the impact of hurricane-induced increases in light and soil nutrients as a result of canopy defoliation, we conducted a two-way factorial light and nutrient manipulation in a shadehouse experiment. We measured seedling growth of the dominant canopy species in the four Everglades forest communities: pine rocklands (Pinus elliottii var densa), cypress domes (Taxodium distichum), hardwood hammocks, and tree islands (Quercus virginiana and Bursera simaruba). Light levels were full sun and 50% shade, and nutrient levels coupled with an additional set of individuals that were subjected to a treatment mimicking the sudden effects of canopy opening from hurricane-induced defoliation and the corresponding nutrient pulse. Seedlings were measured weekly for height growth and photosynthesis, with seedlings being harvested after 16 weeks for biomass, leaf area, and leaf tissue N and 13C isotope ratio. Growth rates and biomass accumulation responded more to differences in soil nutrients than differences in light availability, with largest individuals being in the high nutrient treatments. For B. simaruba and P. elliottii, the highest photosynthetic rates occurred in the high light, high nutrient treatment, while T. distichum and Q. virginiana photosynthetic rates were highest in low light, high nutrient treatment. Tissue biomass allocation patterns remained similar across treatments, except for Q. virginiana, which altered above- and belowground biomass allocation to increase capture of limiting soil and light resources. In response to the hurricane simulation treatment, height growth increased rapidly for Q. virginiana and B. simaruba, with nonsignificant increases for the other two species. We show here that ultimately, hurricane-adapted, tropical species may be more likely to recolonize the forest canopy following a large-scale hurricane disturbance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA