Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Front Vet Sci ; 11: 1454762, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253525

RESUMEN

Porcine respiratory disease complex represents a major challenge for the swine industry, with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) being major contributors. Epidemiological studies have confirmed the co-circulation of these viruses in pig herds, making swIAV-PRRSV co-infections expected. A couple of in vivo co-infection studies have reported replication interferences between these two viruses. Herein, using a reductionist in vitro model, we investigated the potential mechanisms of these in vivo interferences. We first examined the impact of swIAV on porcine alveolar macrophages (AMs) and its effects on AMs co-infection by PRRSV. This was done either in monoculture or in co-culture with respiratory tracheal epithelial cells to represent the complexity of the interactions between the viruses and their respective target cells (epithelial cells for swIAV and AMs for PRRSV). AMs were obtained either from conventional or specific pathogen-free (SPF) pigs. SwIAV replication was abortive in AMs, inducing cell death at high multiplicity of infections. In AMs from three out of four conventional animals, swIAV showed no impact on PRRSV replication. However, inhibition of PRRSV multiplication was observed in AMs from one animal, accompanied by an early increase in the expression of interferon (IFN)-I and IFN-stimulated genes. In AMs from six SPF pigs, swIAV inhibited PRRSV replication in all animals, with an early induction of antiviral genes. Co-culture experiments involving tracheal epithelial cells and AMs from either SPF or conventional pigs all showed swIAV-induced inhibition of PRRSV replication, together with early induction of antiviral genes. These findings highlight the complex interactions between swIAV and PRRSV in porcine AMs, and would suggest a role of host factors, such as sanitary status, in modulating viral propagation. Our co-culture experiments demonstrated that swIAV inhibits PRRSV replication more effectively in the presence of respiratory tracheal epithelial cells, suggesting a synergistic antiviral response between AMs and epithelial cells, consistent with in vivo experiments.

2.
Front Plant Sci ; 15: 1439951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109062

RESUMEN

Plant diseases are caused by various microorganisms such as bacteria, fungi, viruses, and nematodes. These diseases impact crop growth, reduce produce quality, and lead to financial losses. Plant disease can be caused by single pathogens or by interactions called "disease complexes", involving two or more pathogens. In these cases, the disease severity caused by the pathogens combined is greater than the sum of the disease caused by each pathogen alone. disease complexes formed among plant-parasitic nematodes (PPNs) with bacteria, fungi, or viruses, can occur. PPNs either enhance the other pathogen incidence and severity or are necessary for disease symptoms to be expressed. PPNs can do so by being wounding agents, vectors, modifiers of plant biochemistry and physiology, or altering the rhizosphere microbiome. This review identifies several PPNs-plant pathogens disease complexes in crop production to discuss how understanding such interactions is key for improving management practices.

3.
Antibiotics (Basel) ; 13(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39200041

RESUMEN

Glaesserella (Haemophilus) parasuis, the causative agent of Glässer's disease, is present in most pig farms as an early colonizer of the upper respiratory tract. It exhibits remarkable variability in virulence and antimicrobial resistance (AMR), with virulent strains capable of inducing respiratory or systemic disease. This study aimed to characterize the virulence and the AMR profiles in 65 G. parasuis isolates recovered from Spanish swine farms. Virulence was assessed using multiplex leader sequence (LS)-PCR targeting vtaA genes, with all isolates identified as clinical (presumed virulent). Pathotyping based on ten pangenome genes revealed the virulent HPS_22970 as the most frequent (83.1%). Diverse pathotype profiles were observed, with 29 unique gene combinations and two isolates carrying only potentially non-virulent pangenome genes. AMR phenotyping showed widespread resistance, with 63.3% classified as multidrug resistant, and high resistance to clindamycin (98.3%) and tylosin (93.3%). A very strong association was found between certain pathotype genes and AMR phenotypes, notably between the virulent HPS_22970 and tetracycline resistance (p < 0.001; Φ = 0.58). This study reveals the wide diversity and complexity of G. parasuis pathogenicity and AMR phenotype, emphasizing the need for the targeted characterization of clinical isolates to ensure appropriate antimicrobial treatments and the implementation of prophylactic measures against virulent strains.

4.
J Vet Diagn Invest ; : 10406387241265986, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175302

RESUMEN

Mycoplasma hyopneumoniae is the causative bacterium of porcine enzootic pneumonia and one of the primary etiologic agents of the porcine respiratory disease complex. Most Brazilian commercial pig farms are positive for this pathogen. However, the prevalence of the pathogen in backyard pig farms has not been described, to our knowledge. Therefore, we aimed to determine the prevalence of M. hyopneumoniae in backyard pig farms in the state of Paraná, Brazil. In January-March 2020, we collected 585 serum samples from pigs in 187 non-vaccinated herds. We tested the sera with an indirect ELISA for anti-M. hyopneumoniae antibodies and found that 182 of 585 (31.1%) samples were positive, and were found in 109 of 187 (58.3%) herds assessed.

5.
Microb Pathog ; 194: 106839, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103126

RESUMEN

Histophilus somni is an important pathogen of the bovine respiratory disease complex, yet the mechanisms underlying its virulence remain poorly understood. It is known that H. somni can incorporate sialic acid into lipooligosaccharide (LOS), and sialylated H. somni is more resistant to phagocytosis and complement-mediated killing by serum compared to non-sialylated bacteria in vitro. However, the virulence of non-sialylated H. somni has not been evaluated in vivo using an animal model. In this study, we investigated the contribution of sialic acid to virulence by constructing an H. somni sialic acid uptake mutant (ΔnanP-ΔnanU) and comparing the parent and mutant strains in a mouse septicemia and mortality model. Intraperitoneal challenge of mice with wildtype H. somni (1 × 108 colony forming units/mouse, CFU) was lethal to all animals. Mice challenged with three different doses (1, 2, or 5 × 108 CFU/mouse) of an H. somni ΔnanP-ΔnanU sialic acid uptake mutant exhibited survival rates of 90 %, 60 %, and 0 % respectively. High-performance anion exchange chromatography analyses revealed that LOS prepared from both parent and the ΔnanP-ΔnanU mutant strains of H. somni were sialylated. These findings suggest the presence of de novo sialic acid synthesis pathway, although the genes associated with de novo sialic acid synthesis (neuB and neuC) were not identified by genomic analysis. The lower attenuation in mice is most likely attributed to the sialylated LOS of H. somni nanPU mutant.


Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos , Ácido N-Acetilneuramínico , Pasteurellaceae , Sepsis , Animales , Ratones , Ácido N-Acetilneuramínico/metabolismo , Pasteurellaceae/genética , Pasteurellaceae/patogenicidad , Pasteurellaceae/metabolismo , Virulencia/genética , Sepsis/microbiología , Sepsis/mortalidad , Lipopolisacáridos/metabolismo , Lipopolisacáridos/genética , Femenino , Mutación , Bovinos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
J Vet Med Sci ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39111845

RESUMEN

In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.

7.
Front Microbiol ; 15: 1430445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132135

RESUMEN

Carrot motley dwarf (CMD) is a viral disease complex caused by co-infection of the polerovirus carrot red leaf virus with the umbraviruses carrot mottle virus or carrot mottle mimic virus, and/or a tombusvirus like associated RNA (tlaRNA), which depend on co-infection with a helper polerovirus to gain aphid transmissibility. In 2020 and 2021 carrot samples from Washington, United States (U.S.), and parsley and cilantro samples from California, U.S., exhibiting typical symptoms of CMD were submitted for diagnosis. Initial RT-PCR diagnostic assays identified the typical CMD viruses in the carrot samples, however only the umbraviruses and tlaRNAs were detected in the parsley and cilantro samples; as such, these samples were retested with another RT-PCR assay for generic polerovirus detection. Unexpectedly, the poleroviruses Torilis crimson leaf virus (TorCLV) and fennel motley virus were identified. Subsequent RNA sequencing analysis was conducted to confirm these results and look for other emergent viruses. In addition to confirming the diagnostic results, the recently described polerovirus Foeniculum vulgare polerovirus, the umbraviruses Pastinaca umbravirus 1 and wild carrot mottle virus, and the tlaRNA Arracacha latent virus E associated RNA were identified, making this the first report of these viruses and tlaRNA in the U.S. Using phylogenetic and pairwise identity comparisons and RDP4 recombination analyses, we also identified a putative novel polerovirus, for which we propose the name parsley polerovirus, that appears to be a recombinant between carrot polerovirus 1, sharing 92% amino acid (aa) identity with the RNA dependent RNA polymerase in the 5' gene block, and TorCLV, sharing >98% aa identity with the capsid protein in the 3 gene block. This work adds to the growing list of polerovirus species exhibiting recombination between the 5' and 3' gene blocks, and highlights the unique, variable, and dynamic associations that can occur in polerovirus, umbravirus, and tlaRNA disease complexes.

8.
Plant Dis ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38932446

RESUMEN

Glory lily (Gloriosa superba), an ornamental climbing plant, contains the bioactive compound colchicine, attracting attention from the pharmaceutical industry. However, soil-borne pathogens have emerged as a serious threat to the cultivation of glory lily, leading to substantial economic losses in the southern parts of India. Among these, the three major pathogens are Macrophomina phaseolina, Fusarium oxysporum, and Agroathelia rolfsii, causing dry root rot (also referred to as charcoal rot), wilt, and stem rot, respectively. Here, we characterised these pathogens using morphological characteristics and phylogenetic analysis of DNA sequences related to the internal transcribed spacer (ITS) of ribosomal DNA, calmodulin (CAL) and translation elongation factor (TEF)-1α. Further, in the pathogenicity tests, the inoculation of M. phaseolina alone resulted in lesions measuring 7.54±0.01 mm on tubers and 90% seedling mortality. This severity was comparable to the simultaneous inoculation of all three pathogens, indicating the prominence of dry root rot among soil-borne diseases. This study marks the first detailed investigation of soil-borne pathogens combined infection in G. superba, contributing to the understanding of fungal disease complexity in medicinal plants.

9.
Animals (Basel) ; 14(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791675

RESUMEN

Bovine respiratory disease complex, a complex respiratory ailment in cattle, results from a combination of viral and bacterial factors, compounded by environmental stressors such as overcrowding, transportation, and adverse weather conditions. Its impact extends beyond mere health concerns, posing significant economic threats to the cattle industry. This study presents an extensive investigation into viral pathogens associated with BRDC in Serbian cattle, utilizing serum samples and nasal swabs. A cross-sectional study was conducted in 2024 across 65 randomly selected dairy farms in Serbia, excluding farms with vaccinated cattle. The farms were categorized by their livestock count: small (≤50 animals), medium (51-200 animals), and large (>200 animals). Serum samples from adult cattle older than 24 months were tested for antibodies against BVDV, BHV-1, BRSV, and BPIV3. Nasal swab samples from the animals with respiratory signs were tested using PCR for viral genome detection. The results showed seropositivity for all four viruses across all of the farms, with BPIV3 exhibiting universal seropositivity. Medium-sized and large farms demonstrated higher levels of seropositivity for BRSV and BHV-1 compared to small farms (p < 0.05). Our true seroprevalence estimates at the animal level were 84.29% for BRSV, 54.08% for BVDV, 90.61% for BHV-1, and 84.59% for BPIV3. A PCR analysis of the nasal swabs revealed positive detections for BRSV (20%), BHV-1 (1.7%), BVDV (8%), and BPIV3 (10.9%). Influenza D virus was not found in any of the samples. This study provides critical insights into the prevalence and circulation of viral pathogens associated with BRDC in Serbian cattle, emphasizing the importance of surveillance and control measures to mitigate the impact of respiratory diseases in cattle populations.

10.
Pathogens ; 13(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38787256

RESUMEN

Tibetan pig is a unique pig breed native to the Qinghai-Tibet Plateau. To investigate viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan province. Following library construction and Illunima Novaseq sequencing, 18 distinct viruses belonging to 15 viral taxonomic families were identified in Tibetan pigs with PRDC. Among the 18 detected viruses, 3 viruses were associated with PRDC, including porcine circovirus type 2 (PCV-2), Torque teno sus virus (TTSuV), and porcine cytomegalovirus (PCMV). The genomic sequences of two PCV-2 strains, three TTSuV strains, and one novel Porprismacovirus strain were assembled by SOAPdenovo software (v2). Sequence alignment and phylogenetic analysis showed that both PCV-2 strains belonged to PCV-2d, three TTSuVs were classified to TTSuV2a and TTSuV2b genotypes, and the Porprismacovirus strain PPMV-SCgz-2022 showed a close genetic relationship with a virus of human origin. Recombination analysis indicated that PPMV-SCgz-2022 may have originated from recombination events between Human 16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain. Furthermore, the high proportion of single infection or co-infection of PCV2/TTSuV2 provides insight into PRDC infection in Tibetan pigs. This is the first report of the viral communities in PRDC-affected Tibetan pigs in this region, and the results provides reference for the prevention and control of respiratory diseases in these animals.

11.
Animals (Basel) ; 14(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338137

RESUMEN

Bovine parainfluenza-3 virus (BPI3V) is an important respiratory pathogen in cattle, contributing to syndromes in the bovine respiratory disease complex (BRDC). Despite its significance, the understanding of its prevalence remains fragmented, especially within the larger framework of BRDC. This systematic review and meta-analysis aimed to determine the global prevalence of BPI3V in cattle using varied detection methods and to highlight associated risk factors. Of 2187 initially retrieved articles, 71 were selected for analysis, covering 32 countries. Depending on the detection method employed, the meta-analysis revealed significant variations in BPI3V prevalence. In the general cattle population, the highest prevalence was observed using the antibody detection method, with a proportion of 0.64. In contrast, in cattle with BRDC, a prevalence of 0.75 was observed. For the antigen detection method, a prevalence of 0.15 was observed, exclusively in cattle with BRDC. In nucleic acid detection, a prevalence of 0.05 or 0.10 was observed in the general and BRDC cattle populations, respectively. In virus isolation methods, a prevalence of 0.05 or 0.04 was observed in the general and BRDC cattle populations, respectively. These findings highlight the differences in the detection ability of different methods in identifying BPI3V. Other factors, such as country, study year, coinfections, farm size, the presence of respiratory signs, sex, and body weight, may also affect the prevalence. Most studies were anchored within broader BRDC investigations or aimed at detecting other diseases, indicating a potential under-representation of focused BPI3V research. BPI3V plays an important role in BRDC, with its prevalence varying significantly based on the detection methodology. To further understand its unique role within BRDC and pave the way for targeted interventions, there is an evident need for independent, dedicated research on BPI3V.

12.
Microbiol Resour Announc ; 13(2): e0105723, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38289056

RESUMEN

Canine pneumovirus was detected by RT-qPCR in 2022 from nasal swabs collected from two dogs with upper respiratory disease in a shelter in Louisiana, United States. The genomes from the designated strains CPnV USA/LA/2022/124423 and USA/LA/2022/123696 were sequenced and show the closest similarity to the pneumonia virus of mice J3666.

13.
Vet J ; 303: 106058, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103886

RESUMEN

The welfare and economic impact of bovine respiratory disease complex (BRDC), and its associated antibiotic usage, are major challenges to cattle rearing and beef cattle finishing industries. Accurate pathogen diagnosis is important to undertake appropriate treatment and long-term management strategies, such as vaccine selection. Conventional diagnostic approaches have several limitations including high costs, long turnaround times and difficulty in test interpretation, which could delay treatment decisions and lead to unnecessary animal losses. We describe the validation of a multiplex-tandem (MT) reverse transcription-polymerase chain reaction (RT-PCR) for the detection of seven common pathogens associated with BRDC. This test has the potential to advance pathogen identification and to overcome many of the limitations of current testing methods. It requires a single sample and results are obtained quickly and not influenced by prior antimicrobial therapy or overgrowth of contaminating organisms. We demonstrated a test specificity of 100% and sensitivity ranging from 93.5% to 100% for these seven common pathogens. This test will be a useful addition to advance BRDC investigation and diagnosis.


Asunto(s)
Complejo Respiratorio Bovino , Enfermedades de los Bovinos , Bovinos , Animales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Complejo Respiratorio Bovino/diagnóstico , Pulmón , Antibacterianos , Escocia , Enfermedades de los Bovinos/diagnóstico
15.
Viruses ; 15(12)2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38140639

RESUMEN

Parvoviruses (PVs) affect various animal species causing different diseases. To date, eight different porcine parvoviruses (PPV1 through PPV8) are recognized in the swine population, all of which are distributed among subfamilies and genera of the Parvoviridae family. PPV1 is the oldest and is recognized as the primary agent of SMEDI, while the rest of the PPVs (PPV2 through PPV8) are called novel PPVs (nPPVs). The pathogenesis of nPPVs is still undefined, and whether these viruses are putative disease agents is unknown. Structurally, the PPVs are very similar; the differences occur mainly at the level of their genomes (ssDNA), where there is variation in the number and location of the coding genes. Additionally, it is considered that the genome of PVs has mutation rates similar to those of ssRNA viruses, that is, in the order of 10-5-10-4 nucleotide/substitution/year. These mutations manifest mainly in the VP protein, constituting the viral capsid, affecting virulence, tropism, and viral antigenicity. For nPPVs, mutation rates have already been established that are similar to those already described; however, within this group of viruses, the highest mutation rate has been reported for PPV7. In addition to the mutations, recombinations are also reported, mainly in PPV2, PPV3, and PPV7; these have been found between strains of domestic pigs and wild boars and in a more significant proportion in VP sequences. Regarding affinity for cell types, nPPVs have been detected with variable prevalence in different types of organs and tissues; this has led to the suggestion that they have a broad tropism, although proportionally more have been found in lung and lymphoid tissue such as spleen, tonsils, and lymph nodes. Regarding their epidemiology, nPPVs are present on all continents (except PPV8, only in Asia), and within pig farms, the highest prevalences detecting viral genomes have been seen in the fattener and finishing groups. The relationship between nPPVs and clinical manifestations has been complicated to establish. However, there is already some evidence that establishes associations. One of them is PPV2 with porcine respiratory disease complex (PRDC), where causality tests (PCR, ISH, and histopathology) lead to proposing the PPV2 virus as a possible agent involved in this syndrome. With the other nPPVs, there is still no clear association with any pathology. These have been detected in different systems (respiratory, reproductive, gastrointestinal, urinary, and nervous), and there is still insufficient evidence to classify them as disease-causing agents. In this regard, nPPVs (except PPV8) have been found to cause porcine reproductive failure (PRF), with the most prevalent being PPV4, PPV6, and PPV7. In the case of PRDC, nPPVs have also been detected, with PPV2 having the highest viral loads in the lungs of affected pigs. Regarding coinfections, nPPVs have been detected in concurrence in healthy and sick pigs, with primary PRDC and PRF viruses such as PCV2, PCV3, and PRRSV. The effect of these coinfections is not apparent; it is unknown whether they favor the replication of the primary agents, the severity of the clinical manifestations, or have no effect. The most significant limitation in the study of nPPVs is that their isolation has been impossible; therefore, there are no studies on their pathogenesis both in vitro and in vivo. For all of the above, it is necessary to propose basic and applied research on nPPVs to establish if they are putative disease agents, establish their effect on coinfections, and measure their impact on swine production.


Asunto(s)
Circovirus , Coinfección , Infecciones por Parvoviridae , Parvovirus Porcino , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria , Sus scrofa , Circovirus/genética
16.
Braz J Microbiol ; 54(4): 3275-3281, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917227

RESUMEN

Bovine respiratory disease (BRD) is a multifactorial and predominantly multietiological disease that affects dairy cattle herds worldwide, being more frequent in young animals. The occurrence of BRD was investigated in lactating cows from two high-yielding dairy herds in southern Brazil. To determine the etiology of the clinical cases of acute respiratory disease, nasal swab samples were collected from cows with clinical signs of BRD and evaluated using PCR and RT-PCR for nucleic acid detection of the main BRD etiological agents, including Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, bovine respiratory syncytial virus, bovine coronavirus, bovine viral diarrhea virus, bovine alphaherpesvirus 1, and bovine parainfluenza virus 3. Only three microorganisms (M. bovis, H. somni, and P. multocida) were identified in both single and mixed infections. We concluded that 40.0% of the cows were infected with M. bovis and 75.0% with H. somni in herd A. Considering both single and mixed infections, the analyses performed in herd B showed that 87.5%, 25.0%, and 50.0% of the cows were infected with M. bovis, H. somni, and P. multocida, respectively. M. bovis and H. somni are considered fastidious bacteria and laboratory diagnosis is neglected. Subsequently, most clinical cases of mycoplasmosis and histophilosis in cattle remain undiagnosed. This study demonstrates the importance of M. bovis and H. somni infections in adult cows with BRD. These results highlight the importance of including these bacteria in the group of etiological agents responsible for the occurrence of BRD in cattle, especially in adult cows with unfavorable immunological conditions, such as recent calving and peak lactation.


Asunto(s)
Infecciones Bacterianas , Enfermedades de los Bovinos , Coinfección , Pasteurella multocida , Animales , Femenino , Bovinos , Coinfección/veterinaria , Lactancia , Enfermedades de los Bovinos/microbiología , Infecciones Bacterianas/veterinaria , Bacterias , Pasteurella multocida/genética
17.
Vet Res ; 54(1): 88, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789451

RESUMEN

Respiratory diseases are a health and economic concern for poultry production worldwide. Given global economic exchanges and migratory bird flyways, respiratory viruses are likely to emerge continuously in new territories. The primary aim of this study was to investigate the major pathogens involved in respiratory disease in Tunisian broiler poultry and their epidemiology. Between 2018 and 2020, broilers farms in northeastern Tunisia were monitored, and 39 clinically diseased flocks were sampled. Samples were screened for five viral and three bacterial respiratory pathogens using a panel of real-time PCR assays. The reemergence of H9N2 low pathogenic avian influenza virus (LPAIV) in commercial poultry was reported, and the Northern and Western African GI lineage strain was typed. The infectious bronchitis virus (IBV) GI-23 lineage and the avian metapneumovirus (aMPV) subtype B also were detected for the first time in broilers in Tunisia. H9N2 LPAIV was the most detected pathogen in the flocks tested, but rarely alone, as 15 of the 16 H9N2 positive flocks were co-infected. Except for infectious laryngotracheitis virus (ILTV), all of the targeted pathogens were detected, and in 61% of the respiratory disease cases, a combination of pathogens was identified. The major combinations were H9N2 + aMPV (8/39) and H9N2 + IBV (6/39), showing the high contribution of H9N2 LPAIV to the multifactorial respiratory diseases. This field survey provided evidence of the emergence of new respiratory viruses and the complexity of respiratory disease in Tunisia. A comprehensive and continuous surveillance strategy therefore is needed to better control respiratory pathogens in Tunisia.


Asunto(s)
Coinfección , Virus de la Bronquitis Infecciosa , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Infecciones del Sistema Respiratorio , Animales , Pollos , Gripe Aviar/epidemiología , Coinfección/epidemiología , Coinfección/veterinaria , Túnez/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/veterinaria , Anticuerpos Antivirales , Enfermedades de las Aves de Corral/epidemiología , Filogenia
18.
J Vet Intern Med ; 37(6): 2610-2622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731196

RESUMEN

BACKGROUND: Nonbronchoscopic bronchoalveolar lavage (nBAL) is routinely performed in calves, and airway cytology has great potential in airway disease diagnostics. A good reference framework for nBAL cytology is lacking. OBJECTIVES: To distinguish different cytological profiles in nBAL from grouped housed calves using cluster analysis, and characterize these profiles on individual and herd levels. ANIMALS: Three hundred thirty-eight group-housed calves from 60 herds (mainly dairy and beef ). METHODS: Cross-sectional study. Differential counts of white blood cells were determined on nBAL fluid, followed by differentiation of cytological profiles by K-means-based cluster analysis. These profiles were characterized by reference values, decision tree analysis, and associations with clinical, ultrasonographic, bacteriological, and cytological features. RESULTS: A normal (55.9%), a neutrophilic (41.1%), and an eosinophilic profile (3.0%) were identified. The normal profile was characterized by reference values of 2.3% to 47.4% neutrophils, 35.1% to 95.1% macrophages, 0.4 to 22.9% lymphocytes, and 0.0% to 0.9% eosinophils. The neutrophilic profile was characterized by ≥44.5% neutrophils, <1.6% eosinophils, and <11.5% lymphocytes. This profile was associated with the isolation of Pasteurella multocida, the presence of neutrophils with toxic granulation, and the presence of phagocytosed bacteria in neutrophils. The eosinophilic profile was characterized by eosinophils ≥1.6% (neutrophilia present) or ≥2.4% (neutrophilia absent), and associated with the presence of mast cells. On herd level, the neutrophilic and eosinophilic profiles were present in 85.0% and 15.0% of the herds, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: This study provides a first step in the development of cytological guidelines, aiding the assessment of airway health and inflammation in calves through nBAL fluid cytology.


Asunto(s)
Enfermedades de los Bovinos , Inflamación , Animales , Bovinos , Líquido del Lavado Bronquioalveolar , Estudios Transversales , Lavado Broncoalveolar/veterinaria , Inflamación/diagnóstico , Inflamación/veterinaria , Análisis por Conglomerados , Dimercaprol , Enfermedades de los Bovinos/diagnóstico
19.
Viruses ; 15(9)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37766287

RESUMEN

Canine infectious respiratory disease complex (CIRDC) is the primary cause of respiratory disease in the canine population and is caused by a wide array of viruses and bacterial pathogens with coinfections being common. Since its recognition in late 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been reported to cause respiratory disease in dogs. Therefore, the rapid detection and differentiation of SARS-CoV-2 from other common viral and bacterial agents is critical from a public health standpoint. Here, we developed and validated a panel of four one-step multiplex qPCR/RT-qPCR assays for the detection and identification of twelve pathogens associated with CIRDC (canine adenovirus-2, canine distemper virus, canine herpesvirus-1, canine influenza A virus, canine parainfluenza virus, canine pneumovirus, canine respiratory coronavirus, SARS-CoV-2, Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, Mycoplasma cynos, and M. canis), as well as the identification of three main CIV subtypes (i.e., H3N2, H3N8, and H1N1). All developed assays demonstrated high specificity and analytical sensitivity. This panel was used to test clinical specimens (n = 76) from CIRDC-suspected dogs. M. canis, M. cynos, and CRCoV were the most frequently identified pathogens (30.3%, 25.0%, and 19.7% of samples, respectively). The newly emerging pathogens CPnV and SARS-CoV-2 were detected in 5.3% of samples and coinfections were identified in 30.3%. This new multiplex qPCR/RT-qPCR panel is the most comprehensive panel developed thus far for identifying CIRDC pathogens, along with SARS-CoV-2.


Asunto(s)
COVID-19 , Canidae , Coinfección , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N8 del Virus de la Influenza A , Infecciones del Sistema Respiratorio , Perros , Animales , SARS-CoV-2/genética , Coinfección/diagnóstico , Coinfección/veterinaria , Subtipo H3N2 del Virus de la Influenza A , COVID-19/diagnóstico , COVID-19/veterinaria , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/veterinaria
20.
Front Vet Sci ; 10: 1234779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720469

RESUMEN

Methods: This study aimed to examine the pathological impact of Porcine Circovirus type 2 (PCV2) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) through histological and immunohistochemical analysis of 79 cases of Porcine Respiratory Disease Complex (PRDC) collected from 22 farms in Northern Italy. Lung tissue and several lymphoid organ samples were deployed to associate PCV2-positive stain with Circovirus-associated Diseases (PCVD). Results: The most common lung lesion observed was interstitial pneumonia, alone or combined with bronchopneumonia. By immunohistochemistry, 44 lungs (55.7%) tested positive for PCV2, 34 (43.0%) for PRRSV, 16 (20.3%) for both viruses and in 17 cases (21.5%) neither virus was detected. Twenty-eight out of 44 (63.6%) PCV2-positive cases had lymphoid depletion or granulomatous inflammation in at least one of the lymphoid tissues examined; thus, they were classified as PCV2 Systemic Diseases (PCV2-SD). In the remaining 16 out of 44 cases (36.4%), PCV2-positive lung lesions were associated with hyperplastic or normal lymphoid tissues, which showed PCV2-positive centrofollicular dendritic cells in at least one of the lymphoid tissues examined. Therefore, these cases were classified as PRDC/PCV2-positive. In the PCV2-positive animals, 42.9% of the PCV2-SD cases (12/28) showed immunohistochemistry (IHC) positivity for PRRSV in the lung tissue, while 25.0% of PRDC/PCV2-positive cases (4/16) showed double positivity for PCV2 and PRRSV. Discussion: In light of the caseload presented in this study, characterized by the high proportion of PCV2-SD cases alongside the overall respiratory symptomatology, it is imperative to emphasize the crucial role of a comprehensive sampling protocol. This is critical to avoid underestimating the harm caused by PCV2 in farms, particularly with respect to the systemic form of the disease. PCV2 and PRRSV remain the primary infections associated with PRDC in Italy that can significantly impact farm health and co-infections in the field can worsen the pathology, thus the selection of appropriate preventive measures is critical.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA