Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Pharm Dev Technol ; : 1-9, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231255

RESUMEN

OBJECTIVE: This study aimed to develop a stable and scalable enteric film-coated tablet for the gastric irritant dexibuprofen. METHODS: Utilizing direct compression with super-disintegration (crospovidone), the optimal core batches were coated with Opadry white seal coat and enterically coated with Eudragit®L100 with pigment (Talc), demonstrating a 12% weight increase; release and integrity were assessed using specific pH buffers and SEM, with stability testing confirming a six-month shelf life at 40 °C and 75% RH. RESULTS: The optimized formulation achieved 99.87% release in phosphate buffer within 60 min, maintained integrity for 120 min in acidic conditions, and exhibited superior bioavailability compared to Innovifen with relative bioavailability ≈of 121% and elevated Cmax (18.35 µg/ml compared to 11.1 µg/ml). CONCLUSION: These results highlight the potential of this formulation to enhance patient safety and efficacy through delayed enteric technology and fast intestinal release.

2.
Int J Pharm ; 664: 124587, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39147250

RESUMEN

Predicting the mechanical properties of powder mixtures without extensive experimentation is important for model driven design in solid dosage form manufacture. Here, a new binary interaction-based model is proposed for predicting the compressibility and compactability of directly compressed pharmaceutical powder mixtures based on the mixture composition. The model is validated using blends of MCC, lactose and paracetamol or ibuprofen. Both compressibility and compactability profiles are predicted well for a variety of blend compositions of ternary mixtures for the two formulations. The model performs well over a wide range of compositions for both blends and better than either an ideal mixing model or a ternary interaction model. A design of experiments which reduces the amount of API required for fitting the model parameters for a new formulation is proposed to reduce amount of API required. The design requires only three blends containing API. The model gives similar performance to the well-known Reynolds et al. model (2017) when trained using the same data sets. The binary interaction model approach is generalizable to other powder mixture properties. The model presented in this work is limited to curve-fitting of empirical compaction models for mixtures of common pharmaceutical powders and is not intended to provide guidance on the practical operating space (or design space) limits.


Asunto(s)
Acetaminofén , Ibuprofeno , Lactosa , Polvos , Resistencia a la Tracción , Polvos/química , Ibuprofeno/química , Acetaminofén/química , Lactosa/química , Porosidad , Celulosa/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Excipientes/química , Modelos Teóricos
3.
Pharmaceutics ; 16(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204405

RESUMEN

Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This co-processed excipient, developed in a previous study, exhibited improved flow and compression properties compared to pure silica while maintaining a high specific surface area for drug adsorption. Rotary evaporation was used to formulate solid dispersions with different amounts of fenofibrate, which were evaluated for solid state properties and drug release. The solid dispersion with 30% fenofibrate showed no signs of crystallinity and had a significantly improved dissolution rate, making it the optimal sample for formulation or orodispersible tablets. The aim was to produce tablets with minimal amounts of additional excipients while achieving a drug release profile similar to the uncompressed solid dispersion. The compressed formulations met the requirements for orodispersible tablets in terms of disintegration time, and the drug release from best formulation approximated the profile of uncompressed solid dispersion. Future research should focus on reducing the disintegration time and tablet size to enhance patient acceptability further.

4.
Int J Pharm X ; 8: 100264, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39040515

RESUMEN

Process intensification involves the miniaturization of equipment while retaining process throughput and performance. The pharmaceutical industry can benefit from this approach especially during drug product development, where the availability of active pharmaceutical ingredients (API) is often limited. It reduces the need for process scale up, as equipment used during product development and commercial production is identical. However, applications of process intensification for processing pharmaceutical powders are limited so far. Here we show that semi-continuous mini-blending can be utilized for process intensification of blending of API and excipients. Uniform blending at commercially relevant throughputs was achieved through mini-blends with a volume of less than ten liters. Our results demonstrate that blending speed, cycle time and blender fill level can be optimized without compromising blending performance. Acceptable blend uniformity is obtained over a broad range of operating parameters, by choosing the right excipients. The optimized throughput of the mini-blending process is in line with the desired throughput of a commercial Continuous Direct Compression (CDC) process.

5.
Pharm Dev Technol ; 29(7): 649-662, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38864367

RESUMEN

The study aimed to fingerprint the physical manufacturing properties of five commonly used acid sources in effervescent systems for designing the formulation and process of such systems. The hygroscopicity, texture properties, rheological torque, compressibility, tabletability, etc., were investigated to inspect 'powder direct compression (DC)' and 'wet granulation and compression' properties of citric (CA), tartaric (TA), malic (MA), fumaric (FA), and adipic acid (AA). The DC ability was evaluated by the SeDeM expert system. The results indicated that all acid powders failed to meet flowability requirements for DC, and plastic deformation dominated during compression. Furthermore, CA exhibited strong hygroscopicity and punch sticking, while MA demonstrated the best tabletability. TA had a large wet granulation space and was relatively the most suitable for DC. AA was extremely hygroscopic, and its flowability improved significantly as particle size increased. Finally, FA displayed the lowest hygroscopicity and ejection force as well as great compressibility and wet granulation space, and did not exhibit punch sticking, while the granule fragments dissolved slowly during disintegration. Generally speaking, the formulation or granulation affected the tabletability, indicating that pairing with other acids or suitable fillers could potentially improve its disadvantages. These multidimensional assessments effectively reduce the pre-exploration and enhance the efficiency of the development of effervescent systems.


Asunto(s)
Composición de Medicamentos , Tamaño de la Partícula , Polvos , Comprimidos , Polvos/química , Composición de Medicamentos/métodos , Excipientes/química , Reología , Humectabilidad , Tartratos/química , Química Farmacéutica/métodos , Malatos/química , Ácidos/química , Fumaratos/química , Adipatos/química , Ácido Cítrico/química
6.
Eur J Pharm Sci ; 200: 106835, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908413

RESUMEN

Lamivudine (LMD), an enantiomer of 2'-deoxy-3'-thiacytidine, plays a crucial role in combatting HIV-1 and managing hepatitis B virus infections. Despite its effectiveness, challenges arise from its difficult flowability and tendency to agglomerate during storage, necessitating a granulation step before tablet compression, as direct compression has proven ineffective. This study aimed to optimize Lamivudine spherical agglomerates using response surface methodology, delving into the intricate relationship between design factors (concentration of tween, span, and acetone) and experimental outcomes (yield and particle size) through central composite design. Analysis of variance (ANOVA) was employed for optimization, with the Quasi-emulsion solvent-diffusion (QESD) crystallization technique utilized for the checkpoint batch. This technique, involving a single solvent and antisolvent with surfactants, showcased remarkable enhancements in flowability and reduced storage agglomeration. The impact of various surfactants [Hydroxy Propyl Methyl Cellulose (HPMC), polysorbate 80, and sorbitane monooleate] on particle morphology, flowability, and storage agglomeration during crystallization was thoroughly assessed. While achieving direct compression into tablets, the porous structure of LMD agglomerates presented challenges in tablet press production speeds, prompting adjustments such as reducing punch speed or implementing a precompression step. Positive outcomes were realized for disintegration and in vitro drug release in comparison to direct compression and wet granulation methods. In conclusion, the QESD crystallization technique successfully yielded hollow, spherical LMD agglomerates with enhanced properties, representing a significant milestone in pharmaceutical formulation.


Asunto(s)
Cristalización , Emulsiones , Lamivudine , Tamaño de la Partícula , Solventes , Tensoactivos , Comprimidos , Lamivudine/química , Comprimidos/química , Tensoactivos/química , Emulsiones/química , Solventes/química , Difusión , Composición de Medicamentos/métodos , Polisorbatos/química , Fármacos Anti-VIH/química , Derivados de la Hipromelosa/química , Hexosas
7.
Int J Pharm ; 660: 124354, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38897486

RESUMEN

During recent years there have been shortages of certain drugs due to problems in raw material supply. These are often related to active ingredients but could also affect excipients. Lactose is one of the most used excipients in tableting and comes in two anomeric and several solid-state forms. The aim of this study was to utilize lactose from a dairy side-stream and compare it against a commercial reference in direct compression. This would be a sustainable option and would secure domestic availability during crises. Two types of lactose, spray-dried and freeze-dried, were evaluated. Lactose was mixed with microcrystalline cellulose in different ratios together with lubricant and glidant, and flowability and tabletability of the formulations was characterized. The fully amorphous and small particle-sized spray-dried lactose flowed inadequately but exhibited good tabletability. The larger particle-sized, freeze-dried lactose exhibited sufficient flow and better tabletability than the commercial reference. However, disintegration and drug release were slower when using the investigational lactose formulations. This was most likely due to remaining milk proteins, especially caseins, in the lactose. Overall, the investigational lactose provides promise for the use of such a side-stream product during crisis situations but enhancing their properties and/or purity would be needed.


Asunto(s)
Celulosa , Composición de Medicamentos , Liberación de Fármacos , Excipientes , Liofilización , Lactosa , Comprimidos , Lactosa/química , Excipientes/química , Celulosa/química , Composición de Medicamentos/métodos , Prueba de Estudio Conceptual , Tamaño de la Partícula , Secado por Pulverización , Industria Lechera , Química Farmacéutica/métodos
8.
Int J Pharm ; 660: 124359, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38901539

RESUMEN

The possibility of attaining direct compression (DC) tableting using silica coated fine particle sized excipients was examined for high drug loaded (DL) binary blends of APIs. Three APIs, very-cohesive micronized acetaminophen (mAPAP, 7 µm), cohesive acetaminophen (cAPAP, 23 µm), and easy-flowing ibuprofen (IBU, 53 µm), were selected. High DL (60 wt%) binary blends were prepared with different fine-milled MCC-based excipients (ranging 20- 37 µm) with or without A200 silica coating during milling. The blend flowability (flow function coefficient -FFC) and bulk density (BD) of the blends for all three APIs were significantly improved by 1 wt% A200 dry coated MCCs; reaching FFC of 4.28 from 2.14, 7.82 from 2.96, and > 10 from 5.57, for mAPAP, cAPAP, and IBU blends, respectively, compared to the uncoated MCC blends. No negative impact was observed on the tablet tensile strength (TS) by using dry coated MCCs despite lower surface energy of silica. Instead, the desired tablet TS levels were reached or exceeded, even above that for the blends with uncoated milled MCCs. The novelty here is that milled and silica coated fine MCCs could promote DC tableting for cAPAP and IBU blends at 60 wt% DL through adequate flowability and tensile strength, without having to dry coat the APIs. The effect of the silica amount was investigated, indicating lesser had a positive impact on TS, whereas the higher amount had a positive impact on flowability. Thus, the finer excipient size and silica amounts may be adjusted to potentially attain blend DC processability for high DL blends of fine APIs.


Asunto(s)
Acetaminofén , Composición de Medicamentos , Excipientes , Ibuprofeno , Tamaño de la Partícula , Dióxido de Silicio , Comprimidos , Resistencia a la Tracción , Excipientes/química , Dióxido de Silicio/química , Ibuprofeno/química , Acetaminofén/química , Composición de Medicamentos/métodos , Celulosa/química , Química Farmacéutica/métodos
9.
Int J Pharm ; 660: 124298, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38825172

RESUMEN

One of the most common forms of controlled release technology for oral drug delivery comprises an active ingredient dispersed in a hydrophilic matrix forming polymer such as hydroxypropyl methylcellulose (HPMC), which is tableted via direct compression. However, HPMC may pose problems in direct compression due to its poor flowability. Hence, mannitol syrup was spray-coated over fluidized HPMC particles to produce co-processed HPMC-mannitol at ratios of 20:80, 50:50, and 70:30. Particles of pure HPMC, co-processed HPMC-mannitol, and their respective physical mixtures were evaluated for powder flowability, compression profiles, and controlled release performance. It was found that co-processed HPMC-mannitol consisted of particles with improved flow compared to pure HPMC particles. Sufficiently strong tablets of >2 MPa could be produced at moderate to high compression forces of 150-200 MPa. The dissolution profile could be tuned to obtain desired release profiles by altering HPMC-mannitol ratios. Co-processed HPMC-mannitol offers an interesting addition to the formulator's toolbox in the design of controlled release formulations for direct compression.


Asunto(s)
Preparaciones de Acción Retardada , Liberación de Fármacos , Excipientes , Derivados de la Hipromelosa , Manitol , Comprimidos , Manitol/química , Derivados de la Hipromelosa/química , Excipientes/química , Preparaciones de Acción Retardada/química , Solubilidad , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Polvos
10.
Int J Pharm ; 658: 124137, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670472

RESUMEN

The shift from batch manufacturing towards continuous manufacturing for the production of oral solid dosages requires the development and implementation of process models and process control. Previous work focused mainly on developing deterministic models for the investigated system. Furthermore, the in silico tuning and analysis of a control strategy are mostly done based on deterministic models. This deterministic approach could lead to wrong actions in diversion strategies and poor transferability of the controller performance if the system behaves differently than the deterministic model. This work introduces a framework that explicitly includes the process variability which is characteristic of powder handling processes and tests it on a novel continuous feeding-blending unit (i.e., the FE continuous processing system (CPS)), followed by a tablet press (i.e., the FE 55). It employs a stochastic model by allowing the model parameters to have a probability distribution. The performance of a model predictive control (MPC), steering the feed rate of the main excipient feeder to compensate for the feed rate deviations of the active pharmaceutical ingredient (API) feeder to keep the API concentration close to the desired value, is evaluated and the impact of process variability is assessed in a Monte Carlo (MC) analysis. Next to the process variability, a model for the prediction error of the chemometric model and realistic feed rate disturbances were included to increase the transferability of the results to the real system. The obtained results show that process variability is inherently present and that wrong conclusions can be drawn if it is not taken into account in the in silico analysis.


Asunto(s)
Simulación por Computador , Excipientes , Método de Montecarlo , Polvos , Comprimidos , Excipientes/química , Polvos/química , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Preparaciones Farmacéuticas/química
11.
Int J Pharm ; 656: 124090, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38582101

RESUMEN

Advancements in industrial technologies and the application of quality by design (QbD) guidelines are shifting the attention of manufacturers towards innovative production techniques. In the pharmaceutical field, there is a significant focus on the implementation of continuous processes, in which the production stages are carried out continuously, without the need to interrupt the process and store the production intermediates, as in traditional batch production. Such innovative production techniques also require the development of proper analytical methods able to analyze the products in-line, while still being processed. The present study aims to compare a traditional batch manufacturing process with an alternative continuous one. To this end, a real pharmaceutical formulation was used, substituting the active pharmaceutical ingredient (API) with riboflavin, at the concentration of 2 %w/w. Moreover, a direct and non-destructive analytical method based on UV-Vis reflectance spectroscopy was applied for the quantification of riboflavin in the final tablets, and compared with a traditional absorbance analysis. Good results were obtained in the comparison of both the two manufacturing processes and the two analytical methods, with R2 higher than 0.9 for all the calculated calibration models and predicted riboflavin concentrations that never significantly overcame the 15 % limits recommended by the pharmacopeia. The continuous production method demonstrated to be as reliable as the batch one, allowing to save time and money in the production step. Moreover, UV-Vis reflectance was proved to be an interesting alternative to absorption spectroscopy, which, with the proper technology, could be implemented for in-line process control.


Asunto(s)
Riboflavina , Espectrofotometría Ultravioleta , Comprimidos , Tecnología Farmacéutica , Riboflavina/análisis , Riboflavina/química , Tecnología Farmacéutica/métodos , Espectrofotometría Ultravioleta/métodos , Composición de Medicamentos/métodos , Química Farmacéutica/métodos
12.
Int J Pharm ; 656: 124100, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609059

RESUMEN

Transferring an existing marketed pharmaceutical product from batch to continuous manufacturing (CM) without changes in regulatory registration is a challenging task in the pharmaceutical industry. Continuous manufacturing can provide an increased production rate and better equipment utilisation while retaining key quality attributes of the final product. Continuous manufacturing necessitates the monitoring of critical quality attributes in real time by appropriate process analytical tools such as near infra-red (NIR) probes. The present work reports a successful transfer of an existing drug product from batch to continuous manufacturing process without changing the formulation. A key step was continuous powder blending, whose design and operating parameters including weir type, agitation rate, dynamic hold-up and residence time were systematically investigated with respect to process repeatability. A NIR-based multivariate data model for in-line composition monitoring has been developed and validated against an existing quality control method for measuring tablet content uniformity. A continuous manufacturing long-run with a throughput of 30 kg/h (approx. 128,000 tablets per hour), uninterrupted for 320 min, has been performed to test and validate the multivariate data model as well as the batch to continuous process transfer. The final disintegration and dissolution properties of tablets manufactured by the continuous process were found to be equivalent to those manufactured by the original batch process.


Asunto(s)
Comprimidos , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Control de Calidad , Polvos/química , Química Farmacéutica/métodos , Espectroscopía Infrarroja Corta/métodos , Excipientes/química , Solubilidad , Liberación de Fármacos
13.
Pharmaceutics ; 16(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543322

RESUMEN

The rice bran and rice bran wax of the KJ CMU107 rice strain were investigated as potential tablet lubricants in a directly compressed tablet formulation. Stabilized full-fatted rice bran (sFFRB), stabilized defatted rice bran (sDFRB), and rice bran wax (RBW) extracted and purified from crude rice bran oil (cRBO) were tested. Two commercial lubricants, including magnesium stearate (MGS) and hydrogenated cottonseed oil (HVO), were employed as the standards in the formulated mixtures, which contained spray-dried rice starch (SDRS) as a diluent. The tableting was carried out for each formulation, and the obtained tablets were physically and mechanically evaluated. Among the parameters investigated were the general appearance, ejection force, weight variation, hardness, friability, and disintegration time. The powder flow was also determined for each formulation. The results showed that the tablet ejection forces for all the lubricated formulations (58-259 N) were significantly lower than that of the non-lubricated control formulation (349 N). The use of sFFRB as a lubricant at 0.5-2.0% w/w could lower the ejection force up to 78%, but the hardness reduced so drastically that the formulations failed the friability test due to the chipping of the tablets' edges. Moreover, sDFRB performed significantly better as the use at 0.5-1.0% w/w in the formulation helped to lower the ejection forces by up to 80% while maintaining the changes in the tablet hardness within 10%. RBW functioned effectively as a tablet lubricant at a concentration of 0.5% w/w, yielding tablets with good strength comparable to standard HVO lubricant while helping to reduce the ejection force by 82%. In formulations with good lubrication, i.e., friability < 1%, the powder flow was improved, and the tablet disintegration times were within the same range as the control and HVO formulations. In conclusion, sDFRB displayed a lubricant property at concentrations between 0.5 and 1.0% w/w, with slightly negative effects on the tablet hardness. RBW from KJ CMU107 rice was an effective tablet lubricant at 0.5% w/w, with no effect on tablet hardness. Both materials can be further developed for use as commercial lubricants in direct compression.

14.
Int J Pharm ; 654: 123944, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38403089

RESUMEN

Clarithromycin (CLA) is a high dose antibiotic drug exhibiting poor flowability and tabletability, making the tablet development challenging. This study aims to develop spherulitic CLA by introducing trace amount of polymer in crystallization solution. Its formation mechanism, physicochemical properties and potential for the direct compression (DC) tablets development were also investigated. Morphological analyses and the in situ observation on crystallization process revealed that the CLA spherulites are formed by fractal branching growth from both sides of the threadlike precursor fibers. 1H NMR analysis and nucleation time monitoring indicated that the existence of hydroxypropyl cellulose in solution slowed down the crystal nucleation and growth rate by forming hydrogen bonding interactions with CLA molecules, making the system maintain high supersaturation, providing high driving forces for CLA spherulitic growth. In comparison to commercial CLA, the CLA spherulites exhibit profoundly improved flowability, tabletability and dissolution behaviors. XPS, contact angle and Raman mapping analysis confirmed the presence of a thin HPC layer on the surfaces and interior of CLA spherulitic particles, resulting in increasing powder plasticity, interparticulate bonding strength and powder wettability, thus better tabletability and dissolution performances. The improved flowability and tabletability of CLA spherulites also enabled the successful development of DC tablet formulation with a high CLA loading (82.8 wt%) and similar dissolution profiles to reference listed drug. This study provides a novel solid form of CLA with superior manufacturability for further development.


Asunto(s)
Claritromicina , Polímeros , Composición de Medicamentos/métodos , Polvos/química , Comprimidos/química , Solubilidad
15.
Trop Anim Health Prod ; 56(2): 81, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368294

RESUMEN

The use of herbal medicine to treat various diseases is becoming increasingly important as an alternative therapy. Numerous plants have been traditionally used for different purposes, including antiparasitic in humans and animals. Diseases caused by gastrointestinal parasites in ruminants, especially by the nematode Haemonchus contortus, cause large economic losses to the producers, whether by complications of the diseases or the cost of treatment. The main way of handling nematodiasis is by administering anthelmintic drugs, but their excessive use has the disadvantage of causing drug resistance; therefore, an alternative is the use of herbal medicine for this purpose. Mesquite (Prosopis spp.) has been used in Mexico to treat gastrointestinal diseases attributed to helminths. The present study aimed to characterize the rheological properties of mesquite flour using the SeDeM Expert System to determine its suitability for tablet production by direct compression. Direct compression technology facilitates the tableting process by reducing manufacturing costs. The results of the present study indicate that mesquite flour can be processed by direct compression. The latter could allow the manufacturing of economic tablets to treat infections by H. contortus in ruminants.


Asunto(s)
Antihelmínticos , Haemonchus , Prosopis , Enfermedades de las Ovejas , Humanos , Ovinos , Animales , Antiparasitarios , Harina , Extractos Vegetales , Comprimidos , Rumiantes , Enfermedades de las Ovejas/tratamiento farmacológico , Enfermedades de las Ovejas/parasitología
16.
Int J Pharm X ; 7: 100226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38235316

RESUMEN

In this study, an in-depth comparison was made between batch and continuous direct compression using similar compression set-ups. The overall material processability and final tablet quality were compared and evaluated. Correlations between material properties, process parameters and final tablet properties were made via multivariate data analyses. In total, 10 low-dosed (1% w/w) and 10 high-dosed (40% w/w) formulations were processed, using a total of 10 different fillers/filler combinations. The trials indicated that the impact of filler type, drug load or process settings was similar for batch and continuous direct compression. The main differentiator between batch and continuous was the flow dynamics in the operating system, where properties related to flow, compressibility and permeability played a crucial role. The less consistent flow throughout a batch process resulted in a significantly higher variability within the tablet press (σCF) and for the tablet quality responses (σMass, σTS). However, the better controlled blending procedure prior to batch processing was reflected in a more consistent API concentration variability. Overall, the comparison showed the benefits of selecting appropriate excipients and process settings to achieve a specific outcome, keeping in mind some key differentiators between both processes.

17.
Int J Pharm ; 651: 123796, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38190950

RESUMEN

Utilising three artificial intelligence (AI)/machine learning (ML) tools, this study explores the prediction of fill level in inclined linear blenders at steady state by mapping a wide range of bulk powder characteristics to processing parameters. Predicting fill levels enables the calculation of blade passes (strain), known from existing literature to enhance content uniformity. We present and train three AI/ML models, each demonstrating unique predictive capabilities for fill level. These models collectively identify the following rank order of feature importance: RPM, Mixing Blade Region (MB) size, Wall Friction Angle (WFA), and Feed Rate (FR). Random Forest Regression, a machine learning algorithm that constructs a multitude of decision trees at training time and outputs the mode of the classes (classification) or mean prediction (regression) of the individual trees, develops a series of individually useful decision trees. but also allows the extraction of logic and breakpoints within the data. A novel tool which utilises smart optimisation and symbolic regression to model complex systems into simple, closed-form equations, is used to build an accurate reduced-order model. Finally, an Artificial Neural Network (ANN), though less interrogable emerges as the most accurate fill level predictor, with an r2 value of 0.97. Following training on single-component mixtures, the models are tested with a four-component powdered paracetamol formulation, mimicking an existing commercial drug product. The ANN predicts the fill level of this formulation at three RPMs (250, 350 and 450) with a mean absolute error of 1.4%. Ultimately, the modelling tools showcase a framework to better understand the interaction between process and formulation. The result of this allows for a first-time-right approach for formulation development whilst gaining process understanding from fewer experiments. Resulting in the ability to approach risk during product development whilst gaining a greater holistic understanding of the processing environment of the desired formulation.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Fenómenos Físicos
18.
Pharm Dev Technol ; 29(1): 62-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190194

RESUMEN

Herein, we aimed to formulate a novel oral disintegrating tablet (ODT) of aripiprazole (ARP) capable of rapid disintegration using a direct compression technique. Different ODTs were fabricated with directly compressible excipients, and their disintegration time, wettability (water absorption ratio and wetting time), and mechanical properties (hardness and friability) were evaluated. The optimized ODT comprised F-Melt® type C, Prosolv® SMCC HD90, and Na croscarmellose (10 mg of ARP in a 130 mg tablet). The ODT with 3.1-5.2 kp hardness exhibited rapid disintegration (14.1-17.2 sec), along with appropriate mechanical strength (friability < 0.24%). In a bioequivalent study in Korean healthy subjects (randomized, single-dose, two-period crossover design, n = 37), the novel ODT offered the equivalent pharmacokinetic profile to that of a conventional immediate release tablet (Otsuka, Abilify®, Japan), despite different disintegration and dissolution profiles. The 90% confidence intervals of the geometric mean test to reference ratios considering the area-under-the-curve and maximum plasma drug concentrations were 1.0306-11051 and 0.9448-1.1063, respectively, satisfying FDA regulatory criteria for bioequivalence. The novel ART ODT was physicochemically stable under the accelerated storage condition (40 °C, RH75%) for 24 weeks. Therefore, the novel ARP-loaded ODT is expected to be an alternative to oral ARP therapy, providing improved patient adherence.


Asunto(s)
Aripiprazol , Humanos , Administración Oral , Solubilidad , Comprimidos/química , Equivalencia Terapéutica , Estudios Cruzados
19.
Pharm Res ; 41(1): 185-197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37978101

RESUMEN

PURPOSE: Although the mechanical properties of paracetamol and MCC are extensively described in literature, there still is a need for a better understanding of the material properties impacting them. Thus, this study systematically analyzed material properties of paracetamol-MCC blends to elucidate their influence on the mechanical tablet properties in roller compaction and direct compression with special focus on surface properties. METHODS: Multiple material characteristics of binary mixtures of paracetamol and MCC with varying drug loads were analyzed, with particular emphasis on specific surface area and surface energy. Subsequently, mechanical tablet properties of the materials in direct compression and after roller compaction were examined. RESULTS: It was demonstrated that the impact of the initial material properties on mechanical tablet properties prevailed over the impact of processing route for paracetamol-MCC blends, underlining the importance of material characterization for tabletability of oral solid dosage forms. By applying bivariate as well as multivariate analysis, key material properties influencing the tabletability of paracetamol, MCC and its mixtures such as surface area, surface energy, effective angle of internal friction and density descriptors were identified. CONCLUSIONS: This study highlighted the importance of comprehensive assessment of different material characteristics leading to a deeper understanding of underlying factors impacting mechanical tablet properties in direct compression and after roller compaction by the example of paracetamol-MCC mixtures with varying drug loads. Furthermore, it was shown that multivariate analysis could be a valuable extension to common bivariate analysis to reveal underlying correlations of material properties.


Asunto(s)
Acetaminofén , Excipientes , Composición de Medicamentos , Comprimidos , Presión , Polvos , Resistencia a la Tracción , Tamaño de la Partícula
20.
J Pharm Sci ; 113(2): 306-313, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38065243

RESUMEN

Pharmaceutical products represent a meaningful target for sustainability improvement and emissions reduction. It is proposed here that rethinking the standard, and often linear, approach to the synthesis of Active Pharmaceutical Ingredients (API) and subsequent formulation and drug product processing will deliver transformational sustainability opportunities. The greatest potential arguably involves API that have challenging physico-chemical properties. These can require the addition of excipients that can significantly exceed the weight of the API in the final dosage unit, require multiple manufacturing steps to achieve materials amenable to delivering final dosage units, and need highly protective packaging for final product stability. Co-processed API are defined as materials generated via addition of non-covalently bonded, non-active components during drug substance manufacturing steps, differing from salts, solvates and co-crystals. They are an impactful example of provocative re-thinking of historical regulatory and quality precedents, blurring drug substance and drug product operations, with sustainability opportunities. Successful examples utilizing co-processed API can modify properties with use of less excipient, while simultaneously reducing processing requirements by delivering material amenable to continuous manufacturing. There are also opportunities for co-processed API to reduce the need for highly protective packaging. This commentary will detail the array of sustainability impacts that can be delivered, inclusive of business, regulatory, and quality considerations, with discussion on potential routes to more comprehensively commercialize co-processed API technologies.


Asunto(s)
Química Farmacéutica , Industria Farmacéutica , Tecnología Farmacéutica , Embalaje de Medicamentos , Excipientes/química , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA