Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Methods Mol Biol ; 2856: 263-268, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283457

RESUMEN

We describe an approach for reconstructing three-dimensional (3D) structures from single-cell Hi-C data. This approach has been inspired by a method of recurrence plots and visualization tools for nonlinear time series data. Some examples are also presented.


Asunto(s)
Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Imagenología Tridimensional/métodos , Humanos , Programas Informáticos , Cromosomas/genética , Algoritmos
2.
J Evol Biol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230169

RESUMEN

Many organisms alternate between distinct haploid and diploid phases, which generates population structure according to ploidy level. In this research, we consider a haploid-diploid population using statistical approaches developed for spatially subdivided populations, where haploids represent one "patch" and diploids another "patch". In species with alternating generations, sexual reproduction causes movement from diploids to haploids (by meiosis with recombination) and from haploids to diploids (by syngamy). Thus, an allele in one ploidy phase can be said to "migrate" to the other ploidy phase by sexual reproduction and to "remain" in the same ploidy phase by asexual reproduction. By analyzing a coalescent model of the probability of identity by descent and by state for a haploid-diploid system, we define FST-like measures of differentiation between haploids and diploids and show that these measures can be simplified as a function of the extent of sexuality in each ploidy phase. We conduct simulations with an infinite-alleles model and discuss a method for estimating the degree of effective sexuality from genetic data sets that uses the observed FST measures of haploid-diploid species.

4.
Bioresour Technol ; 412: 131396, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39216706

RESUMEN

Microbial cell factories provide an efficient approach for the green manufacturing of chemicals. However, the excessive use of sugars increases the potential risk of food crisis. Methanol, an abundant feedstock, holds promise in facilitating low-carbon production processes. However, the current methanol bioconversion is hindered by limited regulatory strategies and relatively low conversion efficiency. Here, a yeast biocatalyst was extensively engineered for efficient biosynthesis of fatty alcohols through reinforcement of precursor supply and methanol assimilation in Pichia pastoris. Furthermore, the dual cytoplasmic and peroxisomal biosynthetic pathways were constructed by mating and exhibited robust production of 5.6 g/L fatty alcohols by using methanol as the sole carbon source. This study provides a heterozygous diploid P. pastoris strain with dual cytoplasmic and peroxisomal biosynthetic pathways, which achieved the highest fatty alcohol production from one-carbon feedstocks to date.


Asunto(s)
Vías Biosintéticas , Alcoholes Grasos , Ingeniería Metabólica , Metanol , Metanol/metabolismo , Alcoholes Grasos/metabolismo , Ingeniería Metabólica/métodos , Saccharomycetales
5.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39201698

RESUMEN

Polyploid rice and its reverted diploid show rich phenotypic variation and strong heterosis, showing great breeding value. However, the genomic differences among tetraploids, counterpart common diploids, tetraploid-revertant diploids, and hybrid descendants are unclear. In this work, we bred a new excellent two-line hybrid rice variety, Y Liang You Duo Hui 14 (HTRM12), using Haitian tetraploid self-reverted diploid (HTRM2). Furthermore, we comparatively analyzed the important agronomic traits and genome-wide variations of those closest relatives, Haitian diploid (HT2), Haitian tetraploid (HT4), HTRM2, and HTRM12 in detail, based on multiple phenotypic investigations, genome resequencing, and bioinformatics analysis. The results of agronomic traits analysis and genome-wide variation analysis of single nucleotide polymorphism (SNP), insertion-deletion (InDel), and copy number variation (CNV) show that HT4 and HTRM2 had abundant phenotypic and genomic variations compared to HT2. HTRM2 can inherit important traits and variations from HT4. This implies that tetraploid self-reverted diploid has high potential in creating excellent breeding materials and in breeding breakthrough hybrid rice varieties. Our study verifies the feasibility that polyploid rice could be used as a mutation carrier for creating variations and provides genomic information, new breeding materials, and a new way of application for tetraploid rice breeding.


Asunto(s)
Genoma de Planta , Oryza , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Tetraploidía , Oryza/genética , Fitomejoramiento/métodos , Fenotipo , Variaciones en el Número de Copia de ADN/genética , Variación Genética
6.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39120426

RESUMEN

Whole genome duplications are implicated in genome instability and tumorigenesis. Human and yeast polyploids exhibit increased replication stress and chromosomal instability, both hallmarks of cancer. In this study, we investigate the transcriptional response of Schizosaccharomyces pombe to increased ploidy generally, and in response to treatment with the genotoxin methyl methanesulfonate (MMS). We find that treatment of MMS induces upregulation of genes involved in general response to genotoxins, in addition to cell cycle regulatory genes. Downregulated genes are enriched in transport and sexual reproductive pathways. We find that the diploid response to MMS is muted compared to the haploid response, although the enriched pathways remain largely the same. Overall, our data suggests that the global S. pombe transcriptome doubles in response to increased ploidy but undergoes modest transcriptional changes in both unperturbed and genotoxic stress conditions.


Asunto(s)
Daño del ADN , Diploidia , Regulación Fúngica de la Expresión Génica , Haploidia , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de los fármacos , Metilmetanosulfonato/farmacología , Transcriptoma , Transcripción Genética , Perfilación de la Expresión Génica , Mutágenos/toxicidad , Mutágenos/farmacología
8.
BMC Plant Biol ; 24(1): 813, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210253

RESUMEN

The SET domain genes (SDGs) are significant contributors to various aspects of plant growth and development, mainly includes flowering, pollen development, root growth, regulation of the biological clock and branching patterns. To clarify the biological functions of the chrysanthemum SDG family, the SDG family members of four chrysanthemum cultivars and three related wild species were identified; their physical and chemical properties, protein domains and conserved motifs were predicted and analyzed. The results showed that 59, 67, 67, 102, 106, 114, and 123 SDGs were identified from Chrysanthemum nankingense, Chrysanthemum lavandulifolium, Chrysanthemum seticuspe, Chrysanthemum × morifolium cv. 'Hechengxinghuo', 'Zhongshanzigui', 'Quanxiangshuichang' and 'Jinbeidahong', respectively. The SDGs were divided into 5-7 subfamilies by cluster analysis; different conserved motifs were observed in particular families. The SDGs of C. lavandulifolium and C. seticuspe were distributed unevenly on 9 chromosomes. SDG promoters of different species include growth and development, photo-response, stress response and hormone responsive elements, among them, the cis-acting elements related to MeJA response had the largest proportion. The expression of chrysanthemum SDG genes was observed for most variable selected genes which has close association with important Arabidopsis thaliana genes related to flowering regulation. The qPCR results showed that the expression trend of SDG genes varied in different tissues at different growth stages with high expression in the flowering period. The ClSDG29 showed higher expression in the flower and bud tissues, which indicate that ClSDG29 might be associated with flowering regulation in chrysanthemum. In summary, the results of this study can provide a basis for subsequent research on chrysanthemum flowering time regulation.


Asunto(s)
Chrysanthemum , Flores , Familia de Multigenes , Chrysanthemum/genética , Chrysanthemum/crecimiento & desarrollo , Chrysanthemum/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Genes de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
J Fish Dis ; : e13998, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39001637

RESUMEN

Exposure to temperatures outside of a fish's optimal range results in suppression of the immune system, ultimately leaving aquaculture stocks susceptible to disease outbreaks. This effect is exacerbated in triploid fishes, which demonstrate greater susceptibility to stress than their diploid counterparts. This study investigates the impacts of acute heat stress on the abundance of immune transcripts and proteins in diploid and triploid Chinook salmon (Oncorhynchus tshawytscha), an important finfish crop. This study also demonstrates that acute heat stress induces significant increases in the abundance hsp70, hsp90 and il1b transcripts in the head kidneys, gills and heart ventricles of both diploid and triploid Chinook salmon. Widespread dysregulation of antigen-presentation transcripts was also observed in fish of both ploidies. These results suggest that acute heat stress activates acute-phase responses in Chinook salmon and dysregulates antigen presentation, potentially leaving fish more susceptible to infection. At the protein level, IL-1ß was differentially expressed in the head kidney and ventricles of diploid and triploid salmon following heat shock. Differential expression of two tapasin-like proteins in diploid and triploid salmon subjected to heat shock was also observed. Altogether, these data indicate that diploid and triploid Chinook salmon respond differently to acute thermal stressors.

10.
G3 (Bethesda) ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028844

RESUMEN

We genotyped a population of 618 diploid potato clones derived from six independent potato-breeding programmes from NW-Europe. The diploids were phenotyped for 23 traits, using standardised protocols and common check varieties, enabling us to derive whole population estimators for most traits. We subsequently performed a Genome-Wide Association Study (GWAS) to identify quantitative trait loci (QTL) for all traits with SNPs and short-read haplotypes derived from read-backed phasing. In this study, we used a marker platform called PotatoMASH (Potato Multi-Allele Scanning Haplotags); a pooled multiplex amplicon sequencing based approach. Through this method, neighbouring SNPs within an amplicon can be combined to generate multi-allelic short-read haplotypes (haplotags) that capture recombination history between the constituent SNPs, and reflect the allelic diversity of a given locus in a different way than single bi-allelic SNPs. We found a total of 37 unique QTL across both marker types. A core of 10 QTL were detected with SNPs as well as with haplotags. Haplotags allowed to detect an additional 14 QTL not found based on the SNP set. Conversely, the bi-allelic SNP set also found 13 QTL not detectable using the haplotag set. We conclude that both marker types should routinely be used in parallel to maximize the QTL detection power. We report 19 novel QTL for nine traits: Skin Smoothness, Sprout Dormancy, Total Tuber Number, Tuber Length, Yield, Chipping Colour, After-cooking Blackening, Cooking Type and Eye depth.

11.
Biology (Basel) ; 13(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927327

RESUMEN

Recent advances in diploid F1 hybrid potato breeding rely on the production of inbred lines using the S-locus inhibitor (Sli) gene. As a result of this method, female parent lines are self-fertile and require emasculation before hybrid seed production. The resulting F1 hybrids are self-fertile as well and produce many undesirable berries in the field. Utilization of cytoplasmic male sterility would eliminate the need for emasculation, resulting in more efficient hybrid seed production and male sterile F1 hybrids. We observed plants that completely lacked anthers in an F2 population derived from an interspecific cross between diploid S. tuberosum and S. microdontum. We studied the antherless trait to determine its suitability for use in hybrid potato breeding. We mapped the causal locus to the short arm of Chromosome 6, developed KASP markers for the antherless (al) locus and introduced it into lines with T and A cytoplasm. We found that antherless type male sterility is not expressed in T and A cytoplasm, proving that it is a form of CMS. We hybridized male sterile al/al plants with P cytoplasm with pollen from al/al plants with T and A cytoplasm and we show that the resulting hybrids set significantly fewer berries in the field. Here, we show that the antherless CMS system can be readily deployed in diploid F1 hybrid potato breeding to improve hybridization efficiency and reduce berry set in the field.

12.
Food Chem ; 456: 140013, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38878536

RESUMEN

Wild Fragaria resources exhibit extensive genetic diversity and desirable edible traits, such as high soluble solid content and flavor compounds. However, specific metabolites in different wild strawberry fruits remain unknown. In this study, we characterized 1008 metabolites covering 11 subclasses among 13 wild diploid resources representing eight species, including F. vesca, F. nilgerrensis, F. viridis, F. nubicola, F. pentaphylla, F. mandschurica, F. chinensis, and F. emeiensis. Fifteen potential metabolite biomarkers were identified to distinguish fruit flavors among the 13 diploid wild Fragaria accessions. A total of nine distinct modules were employed to explore key metabolites related to fruit quality through weighted gene co-expression module analysis, with significant enrichment in amino acid biosynthesis pathway. Notably, the identified significantly different key metabolites highlighted the close association of amino acids, sugars, and anthocyanins with flavor formation. These findings offer valuable resources for improving fruit quality through metabolome-assisted breeding.


Asunto(s)
Diploidia , Aromatizantes , Fragaria , Frutas , Variación Genética , Metabolómica , Frutas/química , Frutas/genética , Frutas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Fragaria/química , Fragaria/clasificación , Aromatizantes/metabolismo , Aromatizantes/química , Gusto , Metaboloma
13.
Heliyon ; 10(10): e31507, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38831819

RESUMEN

Diploid inbred-based F1 hybrid True Potato Seed (DHTPS) breeding is a novel technique to transform potato breeding and cultivation across the globe. Significant efforts are being made to identify elite diploids, dihaploids and develop diploid inbred lines for heterosis exploitation in potatoes. Self-incompatibility is the first obstacle for developing inbred lines in diploid potatoes, which necessitates the introgression of a dominant S locus inhibitor gene (Sli) for switching self-incompatibility to self-compatibility. We evaluated a set of 357 diploid clones in different selfing generations for self-compatibility and degree of homozygosity using Kompetitive Allele Specific PCR (KASP) Single Nucleotide Polymorphism (SNP) markers. A subset of 10 KASP markers of the Sli candidate region on chromosome 12 showed an association with the phenotype for self-compatibility. The results revealed that the selected 10 KASP markers for the Sli gene genotype could be deployed for high throughput rapid screening of self-compatibility in diploid populations and to identify new sources of self-compatibility. The homozygosity assessed through 99 KASP markers distributed across all the chromosomes of the potato genome was 20-78 % in founder diploid clones, while different selfing generations, i.e., S0, S1, S2 and S3 observed 36.1-80.4, 56.9-82.8, 59.5-85.4 and 73.7-87.8 % average homozygosity, respectively. The diploid plants with ∼80 % homozygosity were also observed in the first selfing generation, which inferred that homozygosity assessment in the early generations itself could identify the best plants with high homozygosity to speed up the generation of diploid inbred lines.

14.
Trends Genet ; 40(7): 601-612, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777691

RESUMEN

With broad genetic diversity and as a source of key agronomic traits, wild grape species (Vitis spp.) are crucial to enhance viticulture's climatic resilience and sustainability. This review discusses how recent breakthroughs in the genome assembly and analysis of wild grape species have led to discoveries on grape evolution, from wild species' adaptation to environmental stress to grape domestication. We detail how diploid chromosome-scale genomes from wild Vitis spp. have enabled the identification of candidate disease-resistance and flower sex determination genes and the creation of the first Vitis graph-based pangenome. Finally, we explore how wild grape genomics can impact grape research and viticulture, including aspects such as data sharing, the development of functional genomics tools, and the acceleration of genetic improvement.


Asunto(s)
Genoma de Planta , Genómica , Vitis , Vitis/genética , Genómica/métodos , Genoma de Planta/genética , Variación Genética , Resistencia a la Enfermedad/genética , Domesticación , Evolución Molecular
15.
Plant Direct ; 8(5): e589, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766508

RESUMEN

Inbred-hybrid breeding of diploid potatoes necessitates breeding lines that are self-compatible. One way of incorporating self-compatibility into incompatible cultivated potato (Solanum tuberosum) germplasm is to introduce the S-locus inhibitor gene (Sli), which functions as a dominant inhibitor of gametophytic self-incompatibility. To learn more about Sli diversity and function in wild species relatives of cultivated potato, we obtained Sli gene sequences that extended from the 5'UTR to the 3'UTR from 133 individuals from 22 wild species relatives of potato and eight diverse cultivated potato clones. DNA sequence alignment and phylogenetic trees based on genomic and protein sequences show that there are two highly conserved groups of Sli sequences. DNA sequences in one group contain the 533 bp insertion upstream of the start codon identified previously in self-compatible potato. The second group lacks the insertion. Three diploid and four polyploid individuals of wild species collected from geographically disjointed localities contained Sli with the 533 bp insertion. For most of the wild species clones examined, however, Sli did not have the insertion. Phylogenetic analysis indicated that Sli sequences with the insertion, in wild species and in cultivated clones, trace back to a single origin. Some diploid wild potatoes that have Sli with the insertion were self-incompatible and some wild potatoes that lack the insertion were self-compatible. Although there is evidence of positive selection for some codon positions in Sli, there is no evidence of diversifying selection at the gene level. In silico analysis of Sli protein structure did not support the hypothesis that amino acid changes from wild-type (no insertion) to insertion-type account for changes in protein function. Our study demonstrated that genetic factors besides the Sli gene must be important for conditioning a switch in the mating system from self-incompatible to self-compatible in wild potatoes.

16.
Biology (Basel) ; 13(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785792

RESUMEN

Coccolithophores play a significant role in marine calcium carbonate production and carbon cycles, attributing to their unique feature of producing calcareous plates, coccoliths. Coccolithophores also possess a haplo-diplontic life cycle, presenting distinct morphology types and calcification states. However, differences in nutrient acquisition strategies and mixotrophic behaviors of the two life phases remain unclear. In this study, we conducted a series of phagocytosis experiments of calcified diploid and non-calcified haploid strains of coccolithophore Gephyrocapsa huxleyi under light and dark conditions. The phagocytosis capability of each strain was examined based on characteristic fluorescent signals from ingested beads using flow cytometry and fluorescence microscopy. The results show a significantly higher phagocytosis percentage on fluorescent beads in the bacterial prey surrogates of the non-calcified haploid Gephyrocapsa huxleyi strain, than the calcified diploid strain with or without light. In addition, the non-calcified diploid cells seemingly to presented a much higher phagocytosis percentage in darkness than under light. The differential phagocytosis capacities between the calcified diploid and non-calcified haploid Gephyrocapsa huxleyi strains indicate potential distinct nutritional strategies at different coccolithophore life and calcifying stages, which may further shed light on the potential strategies that coccolithophore possesses in unfavorable environments such as twilight zones and the expanding coccolithophore niches in the natural marine environment under the climate change scenario.

17.
Sci Rep ; 14(1): 9368, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654044

RESUMEN

Although colorectal cancer (CRC) remains the second leading cause of cancer-related death in the United States, the overall incidence and mortality from the disease have declined in recent decades. In contrast, there has been a steady increase in the incidence of CRC in individuals under 50 years of age. Hereditary syndromes contribute disproportionately to early onset CRC (EOCRC). These include microsatellite instability high (MSI+) tumors arising in patients with Lynch Syndrome. However, most EOCRCs are not associated with familial syndromes or MSI+ genotypes. Comprehensive genomic profiling has provided the basis of improved more personalized treatments for older CRC patients. However, less is known about the basis of sporadic EOCRC. To define the genomic landscape of EOCRC we used DNA content flow sorting to isolate diploid and aneuploid tumor fractions from 21 non-hereditary cases. We then generated whole exome mutational profiles for each case and whole genome copy number, telomere length, and EGFR immunohistochemistry (IHC) analyses on subsets of samples. These results discriminate the molecular features of diploid and aneuploid EOCRC and provide a basis for larger population-based studies and the development of effective strategies to monitor and treat this emerging disease.


Asunto(s)
Aneuploidia , Neoplasias Colorrectales , Diploidia , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Persona de Mediana Edad , Femenino , Masculino , Adulto , Mutación , Receptores ErbB/genética , Edad de Inicio , Genómica/métodos
18.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608140

RESUMEN

Potato and its wild relatives are distributed mainly in the Mexican highlands and central Andes of South America. The South American A-genome species, including cultivated potatoes, are reproductively isolated from Mexican diploid species. Whole-genome sequencing has disclosed genome structure and similarity, mostly in cultivated potatoes and their closely related species. In this study, we generated a chromosome-scale assembly of the genome of a Mexican diploid species, Solanum bulbocastanum Dun., using PacBio long-read sequencing, optical mapping, and Hi-C scaffolding technologies. The final sequence assembly consisted of 737.9 Mb, among which 647.0 Mb were anchored to the 12 chromosomes. Compared with chromosome-scale assemblies of S. lycopersicum (tomato), S. etuberosum (non-tuber-bearing species with E-genome), S. verrucosum, S. chacoense, S. multidissectum, and S. phureja (all four are A-genome species), the S. bulbocastnum genome was the shortest. It contained fewer transposable elements (56.2%) than A-genome species. A cluster analysis was performed based on pairwise ratios of syntenic regions among the seven chromosome-scale assemblies, showing that the A-genome species were first clustered as a distinct group. Then, this group was clustered with S. bulbocastanum. Sequence similarity in 1,624 single-copy orthologous gene groups among 36 Solanum species and clones separated S. bulbocastanum as a specific group, including other Mexican diploid species, from the A-genome species. Therefore, the S. bulbocastanum genome differs in genome structure and gene sequences from the A-genome species. These findings provide important insights into understanding and utilizing the genetic diversity of S. bulbocastanum and the other Mexican diploid species in potato breeding.


Asunto(s)
Diploidia , Genoma de Planta , Solanum , Solanum/genética , Solanum tuberosum/genética , Cromosomas de las Plantas/genética , Anotación de Secuencia Molecular , Genómica/métodos , Mapeo Cromosómico , Filogenia , México
19.
Methods Mol Biol ; 2797: 323-336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570470

RESUMEN

Cell line panels have proven to be an invaluable tool for investigators researching a range of topics from drug mechanism or drug sensitivity studies to disease-specific etiology. The cell lines used in these panels may range from heterogeneous tumor populations grown from primary tumor isolations to genetically engineered clonal cell lines which express specific gene isoforms. Mouse embryonic fibroblast (MEF) cells are a commonly used cell line for biological research due to their accessibility and ease of genetic manipulation. This chapter will describe the process of creating a size-sorted diploid (SSDC) clonal cell panel expressing specific RAS isoforms from a previously engineered RAS-less MEF cell line pool.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Animales , Ratones , Diploidia , Fibroblastos/patología , Células Clonales , Línea Celular , Neoplasias/patología , Isoformas de Proteínas
20.
Mol Genet Genomics ; 299(1): 30, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472439

RESUMEN

Fusarium wilt, caused by the soilborne fungus Fusarium oxysporum f. sp. vasinfectum (FOV), is a devastating disease affecting cotton (Gossypium spp.) worldwide. Understanding the genetic basis of resistance in diploid cotton and successfully transferring the resistance to tetraploid Upland cotton (G. hirsutum) are crucial for developing resistant cotton cultivars. Although numerous studies have been conducted to investigate the genetic basis of Fusarium wilt in tetraploid cotton, little research has been conducted on diploid species. In this study, an association mapping panel consisting of 246 accessions of G. arboreum, was used to identify chromosomal regions for FOV race 4 (FOV4) resistance based on foliar disease severity ratings in four greenhouse tests. Through a genome-wide association study (GWAS) based on 7,009 single nucleotide polymorphic (SNP) markers, 24 FOV4 resistance QTLs, including three major QTLs on chromosomes A04, A06, and A11, were detected. A validation panel consisting of 97 diploid cotton accessions was employed, confirming the presence of several QTLs. Evaluation of an introgressed BC2F7 population derived from G. hirsutum/G. aridum/G. arboreum showed significant differences in disease incidence and mortality rate, as compared to susceptible and resistant controls, suggesting that the resistance in G. arboreum and/or G. aridum was transferred into Upland cotton for the first time. The identification of novel major resistance QTLs, along with the transfer of resistance from the diploid species, expands our understanding of the genomic regions involved in conferring resistance to FOV4 and contributes to the development of resilient Upland cotton cultivars.


Asunto(s)
Fusarium , Gossypium , Gossypium/genética , Fusarium/genética , Estudio de Asociación del Genoma Completo , Tetraploidía , Diploidia , Enfermedades de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA