Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400433, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023423

RESUMEN

The fabrication of the flexible devices with excellent photovoltaic performance and stability is critical for the commercialization of organic solar cells (OSCs). Herein, the conjugated dimer acceptor DY-TVCl and the non-conjugated dimer acceptor DY-3T based on the monomer MY-BO are synthesized to regulate the molecular glass transition temperatures (Tg) for improving the morphology stability of active layer films. And the crack onset strain values for the blend films based on dimer acceptors are superior than that of small molecule, which are beneficial for the preparation of flexible devices. Accordingly, the binary device based on PM6:DY-TVCl achieves a maximum power conversion efficiency (PCE) of 18.01%. Meanwhile, the extrapolated T80 (time to reach 80% of initial PCE) lifetimes of the PM6:DY-TVCl-based device and PM6:DY-3T-based device are 3091 and 2227 h under 1-sun illumination, respectively, which are better than that of the PM6:MY-BO-based device (809 h). Furthermore, the flexible devices based on DY-TVCl and DY-3T exhibit the efficiencies of 15.23% and 14.34%, respectively. This work affords a valid approach to improve the stability and mechanical robustness of OSCs, as well as ensuring the reproducibility of organic semiconductors during mass production.

2.
Adv Mater ; 36(23): e2313393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573779

RESUMEN

The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.

3.
Angew Chem Int Ed Engl ; 62(21): e202303066, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946862

RESUMEN

Organic solar cells (OSCs) have advanced rapidly due to the development of new photovoltaic materials. However, the long-term stability of OSCs still poses a severe challenge for their commercial deployment. To address this issue, a dimer acceptor (dT9TBO) with flexible linker is developed for incorporation into small-molecule acceptors to form molecular alloy with enhanced intermolecular packing and suppressed molecular diffusion to stabilize active layer morphology. Consequently, the PM6 : Y6 : dT9TBO-based device displays an improved power conversion efficiency (PCE) of 18.41 % with excellent thermal stability and negligible decay after being aged at 65 °C for 1800 h. Moreover, the PM6 : Y6 : dT9TBO-based flexible OSC also exhibits excellent mechanical durability, maintaining 95 % of its initial PCE after being bended repetitively for 1500 cycles. This work provides a simple and effective way to fine-tune the molecular packing with stabilized morphology to overcome the trade-off between OSC efficiency and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA