Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.591
Filtrar
1.
J Fish Dis ; : e14019, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282714

RESUMEN

This study provides a comprehensive summary of the findings regarding the application and diagnostic efficacy of droplet digital PCR (ddPCR) in detecting viral and bacterial pathogens in aquaculture. Utilizing a systematic search of four databases up to 6 November 2023, we identified studies where ddPCR was deployed for pathogen detection in aquaculture settings, adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis of Diagnostic Test Accuracy guidelines. From the collected data, 16 studies retrieved, seven were included in a meta-analysis, encompassing 1121 biological samples from various fish species. The detection limits reported ranged markedly from 0.07 to 34 copies/µL. A direct comparison of the diagnostic performance between ddPCR with quantitative PCR (qPCR) proved challenging due to limited data, thus only a pooled sensitivity analysis was feasible. The results showed a pooled sensitivity of 0.750 (95% confidence interval [CI]: 0.487-0.944) for ddPCR, compared to 0.461 (95% CI: 0.294-0.632) for qPCR, with no statistically significant difference in sensitivity between the two methods (p = .5884). Notably, significant heterogeneity was observed among the studies (I2 = 93%-97%, p < .01), with the year of publication significantly influencing this heterogeneity (p < .001), but not the country of origin (p = .49). No publication bias was detected, and the studies generally exhibited a low risk of bias according to QUADAS-C criteria. While ddPCR and qPCR showed comparable sensitivities in pathogen detection, ddPCR's capability to precisely quantify pathogens without the need for standard curves highlights its potential utility. This characteristic could significantly enhance the accuracy and reliability of pathogen detection in aquaculture.

2.
J Fish Dis ; : e14020, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282798

RESUMEN

Chinese rice-field eels rhabdovirus (CrERV) causes haemorrhagic disease in Chinese rice-field eels (Monopterus albus), leading to significant mortality and economic losses. Sensitive detection of CrERV nucleic acids is essential to control the spread of this pathogen and to treat infected individuals. Herein, we developed an efficient and sensitive droplet digital PCR (ddPCR) method to rapidly detect and quantify CrERV. The ddPCR assay optimal conditions were an annealing temperature of 53°C, and primer and probe concentrations of 0.5 and 0.25 µM, respectively. The assay had a diagnostic sensitivity of 0.23 copies/µL, and was highly specific, showing no cross reactivity with other viruses (infectious haematopoietic necrosis virus, grass carp reovirus, spring viremia of carp virus, largemouth bass ranavirus, carp edema virus, Chinese giant salamander iridovirus, and white spot syndrome virus). Real-time quantitative PCR testing of 30 Chinese rice-field eels samples detected CrERV in 7 samples (23.3%), whereas ddPCR detected CrERV in 12 samples (40%), demonstrating its higher sensitivity. Thus, ddPCR represents an advanced method to absolutely quantify CrERV in infected fish with low virus concentrations, providing a valuable tool to manage the spread and impact of CrERV.

3.
Sci Rep ; 14(1): 21730, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289536

RESUMEN

Wastewater-based epidemiology (WBE) has been previously used as a tool for pathogen identification within communities. After the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) outbreak, in 2020, Daughton proposed the implementation of a wastewater surveillance strategy that could determine the incidence of COVID-19 (coronavirus disease 2019) nationally. Individuals in various stages of SARS-CoV-2 infection, including presymptomatic, asymptomatic and symptomatic patients, can be identified as carriers of the virus in their urine, saliva, stool and other bodily secretions. Studies using this method were conducted to monitor the prevalence of the virus in high-density populations, such as cities but also in smaller communities, such as schools and college campuses. The aim of this pilot study was to assess the feasibility and effectiveness of wastewater surveillance in Bucharest, Romania, and wastewater samples were collected weekly from seven locations between July and September 2023. RNA (ribonucleic acid) extraction, followed by dPCR (digital polymerase chain reaction) analysis, was performed to detect viral genetic material. Additionally, NGS (next generation sequencing) technology was used to identify the circulating variants within the wastewater of Bucharest, Romania. Preliminary results indicate the successful detection of SARS-CoV-2 RNA in wastewater, providing valuable insights into the circulation of the virus within the community.


Asunto(s)
COVID-19 , ARN Viral , SARS-CoV-2 , Aguas Residuales , Aguas Residuales/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , ARN Viral/genética , Rumanía/epidemiología , Humanos , COVID-19/virología , COVID-19/epidemiología , COVID-19/diagnóstico , Proyectos Piloto , Monitoreo Epidemiológico Basado en Aguas Residuales
4.
Eur J Med Res ; 29(1): 458, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261895

RESUMEN

BACKGROUND: DNA methylation showed notable potential to act as a diagnostic marker in many cancers. Many studies proposed DNA methylation biomarker in OSCC detection, while most of these studies are limited to specific cohorts or geographical location. However, the generalizability of DNA methylation as a diagnostic marker in oral cancer across different geographical locations is yet to be investigated. METHODS: We used genome-wide methylation data from 384 oral cavity cancer and normal tissues from TCGA HNSCC and eastern India. The common differentially methylated CpGs in these two cohorts were used to develop an Elastic-net model that can be used for the diagnosis of OSCC. The model was validated using 812 HNSCC and normal samples from different anatomical sites of oral cavity from seven countries. Droplet Digital PCR of methyl-sensitive restriction enzyme digested DNA (ddMSRE) was used for quantification of methylation and validation of the model with 22 OSCC and 22 contralateral normal samples. Additionally, pyrosequencing was used to validate the model using 46 OSCC and 25 adjacent normal and 21 contralateral normal tissue samples. RESULTS: With ddMSRE, our model showed 91% sensitivity, 100% specificity, and 95% accuracy in classifying OSCC from the contralateral normal tissues. Validation of the model with pyrosequencing also showed 96% sensitivity, 91% specificity, and 93% accuracy for classifying the OSCC from contralateral normal samples, while in case of adjacent normal samples we found similar sensitivity but with 20% specificity, suggesting the presence of early disease methylation signature at the adjacent normal samples. Methylation array data of HNSCC and normal tissues from different geographical locations and different anatomical sites showed comparable sensitivity, specificity, and accuracy in detecting oral cavity cancer with across. Similar results were also observed for different stages of oral cavity cancer. CONCLUSIONS: Our model identified crucial genomic regions affected by DNA methylation in OSCC and showed similar accuracy in detecting oral cancer across different geographical locations. The high specificity of this model in classifying contralateral normal samples from the oral cancer compared to the adjacent normal samples suggested applicability of the model in early detection.


Asunto(s)
Metilación de ADN , Neoplasias de la Boca , Regiones Promotoras Genéticas , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , India/epidemiología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Islas de CpG/genética
5.
Ann Surg Oncol ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244517

RESUMEN

BACKGROUND: Sporadic desmoid fibromatosis (DF) is a rare locally aggressive tumor characterized by mutation in exon 3 of CTNNB1 (T41A, S45F, and S45P). Standard of care is active surveillance (AS), but 30% require treatment. DF clinical course is unpredictable and identification of prognostic markers is needed to tailor strategy. In this prospective study, we investigated the consistency between mutation detected in tumor biopsies with that detected in plasma by digital droplet PCR (ddPCR) and the association between circulating tumor DNA (ctDNA) abundancy with clinical outcome. PATIENTS AND METHODS: A total of 56 patients and 10 healthy donors were included. CTNNB1 mutation status of DF biopsies was determined by Sanger and in case of WT CTNNB1 with NGS. In matched plasma samples at enrollment and during AS at specific timepoints, we evaluated cfDNA quantity and ctDNA. RESULTS: ctDNA levels were measured in 46 patients with CTNNB1 mutation. Detection rate for T41A, S45F and S45P was 68%, 42% and 100%, respectively. S45P variant has been detected in all patients with S45P mutation. Longitudinal assessment of ctDNA during AS in nine patients (four with regression and five with progression as first event according to RECIST) showed a concordance between the event and ctDNA level change in six out of nine patients tested (4/5 with progression and 2/4 with regression). CONCLUSIONS: Results of ctDNA analysis support its potential clinical implementation as diagnostic tool in specific clinical scenarios where biopsy can be challenging. A prospective clinical trial needs to be performed to evaluate the potential role of ctDNA as predictive biomarker.

7.
J Colloid Interface Sci ; 678(Pt A): 1132-1142, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39255752

RESUMEN

HYPOTHESIS: The co-flow step emulsification (CFSE) is very sensitive to the two-phase fluid interfaces, we conjecture that the CFSE hydrodynamic model depends on several key factors and the droplet generation process can be precisely controlled, thus to obtain droplet emulsions with the "ultra-high volume fraction of inner-phase" and "flexible droplet size" characteristics. The resulting droplets are expected to be applied to droplet digital PCR (ddPCR) with "high information density" and "wide dynamic range" advances. EXPERIMENTS: By combining numerical simulation and fluid dynamics experiments, we have investigated the crucial parameters affecting the CFSE two-phase interface and finally achieved the prediction and guidance for CFSE droplet production. FINDINGS: With the help of the CFSE device, multivolume droplet populations were produced on demand. Then, ddPCR tests were performed with DNA concentrations from 10 copies/µL to 20,000 copies/µL. The CFSE device owns an ultra-wide dynamic range (up to 5 orders of magnitude), showing excellent quantification ability of nucleic acid targets.

8.
Transpl Int ; 37: 12772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114640

RESUMEN

During the last few years, cell-free DNA (cfDNA) has emerged as a possible non-invasive biomarker for prediction of complications after lung transplantation. We previously published a proof-of-concept study using a digital droplet polymerase chain reaction (ddPCR)-based method for detection of cfDNA. In the current study, we aimed to further evaluate the potential clinical usefulness of detecting chronic lung allograft dysfunction (CLAD) using three different ddPCR applications measuring and calculating the donor fraction (DF) of cfDNA as well as one method using the absolute amount of donor-derived cfDNA. We analyzed 246 serum samples collected from 26 lung transplant recipients. Nine of the patients had ongoing CLAD at some point during follow-up. All four methods showed statistically significant elevation of the measured variable in the CLAD samples compared to the non-CLAD samples. The results support the use of ddPCR-detected cfDNA as a potential biomarker for prediction of CLAD. These findings need to be validated in a subsequent prospective study.


Asunto(s)
Biomarcadores , Ácidos Nucleicos Libres de Células , Trasplante de Pulmón , Humanos , Trasplante de Pulmón/efectos adversos , Ácidos Nucleicos Libres de Células/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Biomarcadores/sangre , Donantes de Tejidos , Anciano , Reacción en Cadena de la Polimerasa/métodos , Complicaciones Posoperatorias/sangre , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/etiología , Estudios Prospectivos , Disfunción Primaria del Injerto/sangre , Disfunción Primaria del Injerto/diagnóstico , Disfunción Primaria del Injerto/etiología , Aloinjertos , Rechazo de Injerto/sangre , Rechazo de Injerto/diagnóstico
9.
Artículo en Inglés | MEDLINE | ID: mdl-39120125

RESUMEN

The presence of residual undifferentiated pluripotent stem cells (PSCs) in PSC-derived cell therapy products (CTPs) is a major safety issue for their clinical application, due to the potential risk of PSC-derived tumor formation. An international multidisciplinary multisite study to evaluate a droplet digital PCR (ddPCR) approach to detect residual undifferentiated PSCs in PSC-derived CTPs was conducted as part of the Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee. To evaluate the use of ddPCR in quantifying residual iPSCs in a cell sample, different quantities of induced pluripotent stem cells (iPSCs) were spiked into a background of iPSC-derived cardiomyocytes (CMs) to mimic different concentrations of residual iPSCs. A one step reverse transcription ddPCR (RT-ddPCR) was performed to measure mRNA levels of several iPSC-specific markers and to evaluate the assay performance (precision, sensitivity, and specificity) between and within laboratories. The RT-ddPCR assay variability was initially assessed by measuring the same RNA samples across all participating facilities. Subsequently, each facility independently conducted the entire process, incorporating the spiking step, to discern the parameters influencing potential variability. Our results show that a RT-ddPCR assay targeting ESRG, LINC00678, and LIN28A genes offers a highly sensitive and robust detection of impurities of iPSC-derived CMs and that the main contribution to variability between laboratories is the iPSC-spiking procedure, and not the RT-ddPCR. The RT-ddPCR assay would be generally applicable for tumorigenicity evaluation of PSC-derived CTPs with appropriate marker genes suitable for each CTP.

10.
Int J Legal Med ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39191920

RESUMEN

BACKGROUND: Small amounts of DNA from a perpetrator collected during crime-scene investigations can be masked by large amounts of DNA from the victim. These samples can provide important information for the perpetrator's conviction. Short tandem repeat (STR) detection system is not sensitive enough to detect trace amounts of minor components in unbalanced mixed DNA. We developed a system using droplet digital polymerase chain reaction (ddPCR) capable of discovering trace components and accurately determining the ratio of mixed DNA in extremely unbalanced mixtures. METHODS: The non-recombining regions of the X chromosome and Y chromosome were quantified in the DNA of male and female mixtures using duplex ddPCR. Absolute quantification of low-abundance portions of trace samples and unbalanced mixtures was done using different mixing ratios. RESULTS: The ddPCR system could be used to detect low-abundance samples with < 5 copies of DNA components in an extremely unbalanced mixture at a mixing ratio of 10000:1. The high sensitivity and specificity of the system could identify the mixing ratio of mixed DNA accurately. CONCLUSIONS: A ddPCR system was developed for evaluation of mixed samples of male DNA and female DNA. Our system could detect DNA quantities as low as 5 copies in extremely unbalanced mixed samples with good specificity and applicability. This method could assist forensic investigators in avoiding the omission of important physical evidence, and evaluating the ratio of mixed male/female trace samples.

11.
Anal Chim Acta ; 1323: 343064, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182967

RESUMEN

BACKGROUND: Accurate estimation of cell viability is crucial in various applications such as cytotoxicity testing and routine cell culture on both industrial and laboratory scales. For this, the real-time monitoring of cell status would be beneficial. Conventional cell-based assays for cell viability have limitations in sensitivity and time-effectiveness. Analysis of cell-free DNA (cfDNA) in (culture) media is a good alternative as cfDNA release are a well-known phenomenon during cell death. RESULTS: We demonstrate a direct digital PCR (dPCR) method to estimate cell viability by analyzing cfDNA in media during induced cell death. After validating the duplex dPCR method for short and long amplicons of the SMAD4 and RPP30 loci, we determined that a media volume of 2 µL is feasible to measure the target DNA copy number with minimal negative effects on amplification. dPCR inhibition was evident with a higher media volume per reaction targeting long amplicons. Next, we applied our dPCR method using media cfDNA and other conventional methods to the monitoring of camptothecin (CPT)-induced cell death. Copy numbers increased significantly after 4 h of CPT treatment, showing a fold change of approximately 4-6 compared to the controls. Cell-based assays such as the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and annexin V/7-AAD assay also indicated increased cell death at 4 h, but the trypan blue exclusion assay did not. SIGNIFICANCE: The developed media cfDNA direct dPCR method allows for efficient measurements of the degree of cell viability. Unlike other conventional cell-based assays, our method has advantages of no loss of cultured cells and the ability to implement online analysis. Accurate and sensitive media cfDNA analysis using dPCR can be adopted in various applications such as determining cytotoxicity levels in large-scale bioreactors or screening for effective anticancer drugs.


Asunto(s)
Supervivencia Celular , Ácidos Nucleicos Libres de Células , Reacción en Cadena de la Polimerasa , Supervivencia Celular/efectos de los fármacos , Humanos , Reacción en Cadena de la Polimerasa/métodos , Camptotecina/farmacología , Medios de Cultivo/química
12.
Clin Chim Acta ; 563: 119903, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39127298

RESUMEN

BACKGROUND AND AIMS: DiGeorge syndrome (DGS) is a genetic disorder manifesting in polymorphic symptoms related to developmental abnormalities of various organs including thymus. DGS is caused by microdeletions in the 22q11.2 region between several low copy repeats (LCR) occurring in approximately 1 in 4000 live births. Diagnosis of DGS relies on phenotypic examination, qPCR, ultrasound, FISH, MLPA and NGS which can be relatively inaccurate, time-consuming, and costly. MATERIALS AND METHODS: A novel multiplex droplet digital PCR (ddPCR) assay was designed, optimized and validated for detection and mapping 22q11.2 microdeletions by simultaneous amplification of three targets - TUPLE1, ZNF74, D22S936 - within the deletion areas and one reference target - RPP30 - as an internal control. RESULTS: The assay reliable identified microdeletions when the template concentration was >32 copies per reaction and successfully detected LCR22A-B, LCR22A-C, LCR22A-D, and LCR22B-C deletions in clinical samples from 153 patients with signs of immunodeficiency. In patients with the microdeletions, flow cytometry detected a significant increase in B-cell and natural killer cell counts and percentages, while T-cell percentages and T-cell receptor excision circle (TREC) numbers decreased. CONCLUSION: The designed ddPCR assay is suitable for diagnosing DGS using whole blood and blood spots.


Asunto(s)
Síndrome de DiGeorge , Reacción en Cadena de la Polimerasa Multiplex , Humanos , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex/métodos , Cromosomas Humanos Par 22/genética , Deleción Cromosómica
13.
Plant Pathol J ; 40(4): 408-413, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39117339

RESUMEN

The emergence of rice black-streaked dwarf virus (RBSDV) poses a significant threat to global cereal crop cultivation, necessitating the urgent development of reliable detection and quantification techniques. This study introduces a reliable approach for the precise and sensitive quantification of the RBSDV in cereal crop samples, employing a reverse transcription digital polymerase chain reaction (RT-dPCR) assay. We assessed the specificity and sensitivity of the RT-dPCR assay proposed for precise RBSDV detection and quantification. Our findings demonstrate that RT-dPCR was specific for detection of RBSDV, with no cross-reactivity observed with other viruses infecting cereal crops. The RT-dPCR sensitivity was over 10 times that of RT-quantitative PCR (RT-qPCR). The detection limit of RT-dPCR was 0.096 copies/µl. In addition, evaluation of RT-dPCR assay with field samples was conducted on 60 different cereal crop samples revealed that RT-dPCR (45/60) exhibited superior accuracy compared with RT-qPCR (23/60). In this study, we present a specific and accurate RT-dPCR assay for the detection and quantification of RBSDV.

14.
Vet Q ; 44(1): 1-8, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39148364

RESUMEN

Brucellosis represents a major public health concern worldwide. Human transmission is mainly due to the consumption of unpasteurized milk and dairy products of infected animals. The gold standard for the diagnosis of Brucella spp in ruminants is the bacterial isolation, but it is time-consuming. Polymerase Chain Reaction (PCR) is a quicker and more sensitive technique than bacterial culture. Droplet digital PCR (ddPCR) is a novel molecular assay showing high sensitivity in samples with low amount of DNA and lower susceptibility to amplification inhibitors. Present study aimed to develop a ddPCR protocol for the detection of Brucella abortus in buffalo tissue samples. The protocol was validated using proficiency test samples for Brucella spp by real time qPCR. Furthermore, 599 tissue samples were examined. Among reference materials, qPCR and ddPCR demonstrated same performance and were able to detect up to 225 CFU/mL. Among field samples, ddPCR showed higher sensitivity (100%), specificity and accuracy of 93.4% and 94.15%, respectively. ddPCR could be considered a promising technique to detect B. abortus in veterinary specimens, frequently characterized by low amount of bacteria, high diversity in matrices and species and poor storage conditions.


Asunto(s)
Brucella abortus , Brucelosis , Búfalos , ADN Bacteriano , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Animales , Brucella abortus/aislamiento & purificación , Brucella abortus/genética , Búfalos/microbiología , Brucelosis/veterinaria , Brucelosis/diagnóstico , Brucelosis/microbiología , ADN Bacteriano/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Reacción en Cadena de la Polimerasa/métodos
15.
Diagnostics (Basel) ; 14(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125474

RESUMEN

Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics and environmental surveillance. Emphasizing its evolution from traditional PCR, dPCR provides accurate absolute quantification of target nucleic acids through advanced partitioning techniques. The review addresses the significant impact of dPCR in sepsis diagnosis and management, showcasing its superior sensitivity and specificity in early pathogen detection and identification of drug-resistant genes. Despite its advantages, challenges such as optimization of experimental conditions, standardization of data analysis workflows, and high costs are discussed. Furthermore, we compare various commercially available dPCR platforms, detailing their features and applications in clinical and research settings. Additionally, the review explores dPCR's role in water microbiology, particularly in wastewater surveillance and monitoring of waterborne pathogens, underscoring its importance in public health protection. In conclusion, future prospects of dPCR, including methodological optimization, integration with innovative technologies, and expansion into new sectors like metagenomics, are explored.

16.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125726

RESUMEN

The ongoing COVID-19 pandemic, caused by the rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since early 2020, has highlighted the need for sensitive and reliable diagnostic methods. Droplet digital PCR (ddPCR) has demonstrated superior performance over the gold-standard reverse transcription PCR (RT-PCR) in detecting SARS-CoV-2. In this study, we explored the development of a multiplex ddPCR assay that enables sensitive quantification of SARS-CoV-2, which could be utilized for antiviral screening and the monitoring of COVID-19 patients. We designed a quadruplex ddPCR assay targeting four SARS-CoV-2 genes and evaluated its performance in terms of specificity, sensitivity, linearity, reproducibility, and precision using a two-color ddPCR detection system. The results showed that the quadruplex assay had comparable limits of detection and accuracy to the simplex ddPCR assays. Importantly, the quadruplex assay demonstrated significantly improved performance for samples with low viral loads and ambiguous results compared to the standard qRT-PCR approach. The developed multiplex ddPCR represents a valuable alternative and complementary tool for the diagnosis of SARS-CoV-2 and potentially other pathogens in various application scenarios beyond the current COVID-19 pandemic. The improved sensitivity and reliability of this assay could contribute to more effective disease monitoring and antiviral screening during the ongoing public health crisis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Sensibilidad y Especificidad , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Humanos , COVID-19/diagnóstico , COVID-19/virología , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa Multiplex/métodos , Límite de Detección , ARN Viral/genética , G-Cuádruplex , Prueba de Ácido Nucleico para COVID-19/métodos
17.
Parasit Vectors ; 17(1): 336, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127700

RESUMEN

BACKGROUND: Giardiasis, caused by the protozoan parasite Giardia intestinalis, often presents a treatment challenge, particularly in terms of resistance to metronidazole. Despite extensive research, markers for metronidazole resistance have not yet been identified. METHODS: This study analysed 28 clinical samples of G. intestinalis from sub-assemblage AII, characterised by varying responses to metronidazole treatment. We focussed on copy number variation (CNV) of the multi-copy flavohemoprotein gene, analysed using digital polymerase chain reaction (dPCR) and next generation sequencing (NGS). Additionally, chromosomal ploidy was tested in 18 of these samples. Flavohemoprotein CNV was also assessed in 17 samples from other sub-assemblages. RESULTS: Analyses revealed variable CNVs of the flavohemoprotein gene among the isolates, with no correlation to clinical metronidazole resistance. Discrepancies in CNVs detected from NGS data were attributed to biases linked to the whole genome amplification. However, dPCR helped to clarify these discrepancies by providing more consistent CNV data. Significant differences in flavohemoprotein CNVs were observed across different G. intestinalis sub-assemblages. Notably, Giardia exhibits a propensity for aneuploidy, contributing to genomic variability within and between sub-assemblages. CONCLUSIONS: The complexity of the clinical metronidazole resistance in Giardia is influenced by multiple genetic factors, including CNVs and aneuploidy. No significant differences in the CNV of the flavohemoprotein gene between isolates from metronidazole-resistant and metronidazole-sensitive cases of giardiasis were found, underscoring the need for further research to identify reliable genetic markers for resistance. We demonstrate that dPCR and NGS are robust methods for analysing CNVs and provide cross-validating results, highlighting their utility in the genetic analyses of this parasite.


Asunto(s)
Antiprotozoarios , Variaciones en el Número de Copia de ADN , Resistencia a Medicamentos , Giardia lamblia , Giardiasis , Metronidazol , Giardia lamblia/genética , Giardia lamblia/efectos de los fármacos , Metronidazol/farmacología , Resistencia a Medicamentos/genética , Humanos , Giardiasis/parasitología , Giardiasis/tratamiento farmacológico , Antiprotozoarios/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Protozoarias/genética
18.
Viruses ; 16(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39205260

RESUMEN

Accurate and early diagnosis of monkeypox virus (MPXV) is crucial for controlling epidemics and treating affected individuals promptly. This study aimed to assess the analytical and clinical performance of the MolecisionTM Monkeypox Virus qPCR Assay, Biorain Monkeypox Virus ddPCR Assay, and MAGLUMI® Monkeypox Virus Ag (chemiluminescence immunoassay, CLIA) Assay. Additionally, it aimed to compare the clinical application of antigen and nucleic acid assays to offer insights into using commercial monkeypox assay kits. Specimens from 117 clinical patients, serial diluted virus cell culture supernatant, and artificially created positive samples were tested to evaluate the performance of these assay kits for MPXV diagnostics. The Biorain Monkeypox Virus ddPCR Assay had a limit of detection (LoD) of 3.89 CCID50/mL, while the MolecisionTM Monkeypox Virus qPCR Assay had an LoD of 15.55 CCID50/mL. The MAGLUMI® Monkeypox Virus Ag (CLIA) Assay had an LoD of 0.500 pg/mL. The accuracy of the MolecisionTM Monkeypox Virus qPCR Assay was comparable to the Biorain Monkeypox Virus ddPCR Assay, and the MAGLUMI® Monkeypox Virus Ag (CLIA) Assay demonstrated high sensitivity. The specificity of all three MPXV diagnostic assays for clinical specimens with potential cross-reacting substances was 100%. In conclusion, this study provides valuable insights into the clinical application of monkeypox assays, supporting efforts to mitigate and control the spread of monkeypox.


Asunto(s)
Monkeypox virus , Mpox , Sensibilidad y Especificidad , Humanos , Mpox/diagnóstico , Mpox/virología , Monkeypox virus/aislamiento & purificación , Monkeypox virus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Límite de Detección , Femenino , Juego de Reactivos para Diagnóstico/normas , Masculino , Técnicas de Diagnóstico Molecular/métodos , Antígenos Virales/análisis , Adulto , Persona de Mediana Edad
19.
Front Pharmacol ; 15: 1429286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206265

RESUMEN

Background: CYP2D6 testing is increasingly used to guide drug therapy and thus, reliable methods are needed to test this complex and polymorphic gene locus. A particular challenge arises from the detection and interpretation of structural variants (SVs) including gene deletions, duplications, and hybrids with the CYP2D7 pseudogene. This study validated the Absolute Q™ platform for digital PCR-based CYP2D6 copy number variation (CNV) determination by comparing results to those obtained with a previously established method using the QX200 platform. In addition, protocols for streamlining CYP2D6 CNV testing were established and validated including the "One-pot" single-step restriction enzyme digestion and a multiplex assay simultaneously targeting the CYP2D6 5'UTR, intron 6, and exon 9 regions. Methods: Genomic DNA (gDNA) samples from Coriell (n = 13) and from blood, saliva, and liver tissue (n = 17) representing 0-6 copies were tested on the Absolute Q and QX200 platforms. Custom TaqMan™ copy number (CN) assays targeting CYP2D6 the 5'UTR, intron 6, and exon 9 regions and a reference gene assay (TERT or RNaseP) were combined for multiplexing by optical channel. In addition, two digestion methods (One-pot digestion and traditional) were assessed. Inconclusive CN values on the Absolute Q were resolved using an alternate reference gene and/or diluting gDNA. Results: Overall, results between the two platforms and digestions methods were consistent. The "One-pot" digestion method and optically multiplexing up to three CYP2D6 regions yielded consistent result across DNA sample types and diverse SVs, reliably detecting up to 6 gene copies. Rare variation in reference genes were found to interfere with results and interpretation, which were resolved by using a different reference. Conclusion: The Absolute Q produced accurate and reliable CYP2D6 copy number results allowing for a streamlined and economical protocol using One-pot digestion and multiplexing three target regions. Protocols are currently being expanded to other pharmacogenes presenting with SVs/CNVs.

20.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201242

RESUMEN

In this study, we present the design, implementation, and successful use of digital droplet PCR (ddPCR) for the monitoring of chimeric antigen receptor T-cell (CAR-T) expansion in patients with B-cell malignancies treated with different CAR-T products at our clinical center. Initially, we designed a specific and highly sensitive ddPCR assay targeting the junction between the 4-1BB and CD3ζ domains of tisa-cel, normalized with RPP30, and validated it using blood samples from the first tisa-cel-treated patient in Switzerland. We further compared this assay with a published qPCR (quantitative real-time PCR) design. Both assays showed reliable quantification of CAR-T copies down to 20 copies/µg DNA. The reproducibility and precision were confirmed through extensive testing and inter-laboratory comparisons. With the introduction of other CAR-T products, we also developed a corresponding ddPCR assay targeting axi-cel and brexu-cel, demonstrating high specificity and sensitivity with a limit of detection of 20 copies/µg DNA. These assays are suitable for CAR-T copy number quantification across multiple sample types, including peripheral blood, bone marrow, and lymph node biopsy material, showing robust performance and indicating the presence of CAR-T cells not only in the blood but also in target tissues. Longitudinal monitoring of CAR-T cell kinetics in 141 patients treated with tisa-cel, axi-cel, or brexu-cel revealed significant expansion and long-term persistence. Peak expansion correlated with clinical outcomes and adverse effects, as is now well known. Additionally, we quantified the CAR-T mRNA expression, showing a high correlation with DNA copy numbers and confirming active transgene expression. Our results highlight the quality of ddPCR for CAR-T monitoring, providing a sensitive, precise, and reproducible method suitable for clinical applications. This approach can be adapted for future CAR-T products and will support the monitoring and the management of CAR-T cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Cinética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA