Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Biol Chem ; 300(6): 107360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735477

RESUMEN

The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Biosíntesis de Proteínas/efectos de los fármacos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Secuencia de Aminoácidos , Oligopéptidos/química , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Factores de Transcripción
2.
Biotechnol Prog ; : e3466, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607316

RESUMEN

Monoclonal antibodies (mAbs) are often engineered at the sequence level for improved clinical performance yet are rarely evaluated prior to candidate selection for their "developability" characteristics, namely expression, which can necessitate additional resource investments to improve the manufacturing processes for problematic mAbs. A strong relationship between primary sequence and expression has emerged, with slight differences in amino acid sequence resulting in titers differing by up to an order of magnitude. Previous work on these "difficult-to-express" (DTE) mAbs has shown that these phenotypes are driven by post-translational bottlenecks in antibody folding, assembly, and secretion processes. However, it has been difficult to translate these findings across cell lines and products. This work presents a systematic approach to study the impact of sequence variation on mAb expression at a larger scale and under more industrially relevant conditions. The analysis found 91 mutations that decreased transient expression of an IgG1κ in Chinese hamster ovary (CHO) cells and revealed that mutations at inaccessible residues, especially those leading to decreases in residue hydrophobicity, are not favorable for high expression. This workflow can be used to better understand sequence determinants of mAb expression to improve candidate selection procedures and reduce process development timelines.

3.
J Biotechnol ; 389: 30-42, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38685416

RESUMEN

Ichnos has developed a multi-specific antibody platform based on the BEAT® (Bispecific engagement by antibodies based on the T-cell receptor) interface. The increased complexity of the bi- and multi-specific formats generated with this platform makes these molecules difficult-to-express proteins compared to standard monoclonal antibodies (mAbs). This report describes how expression limitations of a bi-specific bi-paratopic BEAT antibody were improved in a holistic approach. An initial investigation allowed identification of a misbalance in the subunits composing the BEAT antibody as the potential root cause. This misbalance was then addressed by a signal peptide optimization, and the overall expression level was increased by the combination of two vector design elements on a single gene vector. Further improvements were made in the selection of cell populations and an upstream (USP) platform process was applied in combination with a cell culture temperature shift. This allowed titer levels of up to 6 g/L to be reached with these difficult-to-express proteins. Furthermore, a high-density seeding process was developed that allowed titers of around 11 g/L for the BEAT antibody, increasing the initial titer by a factor of 10. The approach was successfully applied to a tri-specific antibody with titer levels reaching 10 g/L. In summary, a platform process for difficult-to-express proteins was developed using molecular biology tools, cell line development, upstream process optimization and process intensification.


Asunto(s)
Anticuerpos Monoclonales , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/biosíntesis , Células CHO , Cricetulus , Humanos
4.
ACS Synth Biol ; 13(2): 634-647, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38240694

RESUMEN

With the emerging novel biotherapeutics that are typically difficult-to-express (DTE), improvement is required for high-yield production. To identify novel targets that can enhance DTE protein production, we performed genome-wide fluorescence-activated cell sorting (FACS)-based clustered regularly interspaced short palindromic repeats (CRISPR) knockout screening in bispecific antibody (bsAb)-producing Chinese hamster ovary (CHO) cells. The screen identified the two highest-scoring genes, Atf7ip and Setdb1, which are the binding partners for H3K9me3-mediated transcriptional repression. The ATF7IP-SETDB1 complex knockout in bsAb-producing CHO cells suppressed cell growth but enhanced productivity by up to 2.7-fold. Decreased H3K9me3 levels and an increased transcriptional expression level of the transgene were also observed. Furthermore, perturbation of the ATF7IP-SETDB1 complex in monoclonal antibody (mAb)-producing CHO cells led to substantial improvements in mAb production, increasing the productivity by up to 3.9-fold without affecting the product quality. Taken together, the genome-wide FACS-based CRISPR screen identified promising targets associated with histone methylation, whose perturbation enhanced the productivity by unlocking the transgene expression.


Asunto(s)
Sistemas CRISPR-Cas , Genoma , Cricetinae , Animales , Cricetulus , Sistemas CRISPR-Cas/genética , Células CHO , Procesamiento Proteico-Postraduccional , Anticuerpos Monoclonales/metabolismo
5.
N Biotechnol ; 78: 42-51, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37797917

RESUMEN

Molecular biological methods have emerged as inevitable tools to accompany the process of cell line development for the generation of stable and highly productive manufacturing cell lines in the biopharmaceutical industry. PCR-based methods are especially useful for screening and characterization of cell lines due to their low cost, scalability, precision and propensity for multidimensional read-outs. In this study, the diverse applications of droplet digital PCR (ddPCR) as a molecular biological tool for cell line development are demonstrated. Specifically, it is shown that ddPCR can be used to enable precise, sensitive and reproducible absolute quantification of genomically integrated transgene copies during cell line development and cell bank characterization. Additionally, an amplitude multiplexing approach is applied to simultaneously run multiple assays on different genetic targets in a single reaction and advance clonal screening by measuring gene expression profiles to predict the assembly and homogeneity of difficult-to-express (DTE) proteins. The implementation of ddPCR-based assays during cell line development allows for early screening at a transcriptional level, particularly for complex, multidomain proteins, where balanced polypeptide chain ratios are of primary importance. Moreover, it is demonstrated that ddPCR-based genomic characterization improves the robustness, efficiency and comparability of absolute transgene copy number quantification, an essential genetic parameter that must be demonstrated to regulatory authorities during clinical trial and market authorization application submissions to support genetic stability and consistency of the selected cell substrate.


Asunto(s)
Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos , Línea Celular , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
6.
Curr Protoc ; 3(9): e872, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37671955

RESUMEN

The drug discovery landscape is ever-evolving and constantly demands revolutionary technology advancements in protein expression and production laboratories. We have built a higher-throughput mid-scale semi-automated protein expression and screening platform to accelerate drug discovery research. The workflow described here enables comprehensive expression and purification screening assessment of challenging or difficult-to-express recombinant proteins in a fast and efficient manner by delivering small but sufficient amounts of high-quality proteins. The platform has been implemented for a wide range of applications that include identification of optimal constructs and chaperones for poorly expressing proteins, assessment of co-expression partners for expressing stable multiprotein complexes, and suitable buffer/additive screening for insoluble or aggregation-prone proteins. The approach allows parallel expression, purification, and characterization of 24 different samples using co-infection or a polycistronic approach in insect cells and enables parallel testing of multiple parameters to improve protein yields. The strategy has been successfully adopted for screening intracellular and secreted proteins in Escherichia coli, mammalian transient expression, and baculovirus expression vector systems. Proteins purified from this platform are used for several structural and functional screens, such as negative staining, biochemical activity assays, mass spectrometry, surface plasmon resonance, and DNA-encoded chemical library screens. In this article, for simplicity, we have focused on detailed expression and purification screening of intracellular protein complexes from insect cells. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Baculovirus generation via homologous recombination Support Protocol 1: Anti-glycoprotein 64 antibody assay Basic Protocol 2: Generation of insect cell biomass expressing target protein(s) Basic Protocol 3: Mid-scale affinity purification Support Protocol 2: Automated method for affinity purification on Hamilton STAR Basic Protocol 4: Size exclusion chromatography Support Protocol 3: Chromeleon 7 operation on Vanquish Duo.


Asunto(s)
Acetaminofén , Aspirina , Animales , Baculoviridae , Bioensayo , Descubrimiento de Drogas , Escherichia coli , Mamíferos
7.
Metab Eng ; 78: 99-114, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244368

RESUMEN

Solubility and folding stability are key concerns for difficult-to-express proteins (DEPs) restricted by amino acid sequences and superarchitecture, resolved by the precise distribution of amino acids and molecular interactions as well as the assistance of the expression system. Therefore, an increasing number of tools are available to achieve efficient expression of DEPs, including directed evolution, solubilization partners, chaperones, and affluent expression hosts, among others. Furthermore, genome editing tools, such as transposons and CRISPR Cas9/dCas9, have been developed and expanded to construct engineered expression hosts capable of efficient expression ability of soluble proteins. Accounting for the accumulated knowledge of the pivotal factors in the solubility and folding stability of proteins, this review focuses on advanced technologies and tools of protein engineering, protein quality control systems, and the redesign of expression platforms in prokaryotic expression systems, as well as advances of the cell-free expression technologies for membrane proteins production.


Asunto(s)
Sistemas CRISPR-Cas , Biología Sintética , Edición Génica , Ingeniería de Proteínas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Biotechnol Bioeng ; 120(10): 2840-2852, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37232536

RESUMEN

More than half of licensed therapeutic recombinant proteins (r-proteins) are manufactured using constitutively-expressing, stably-transfected Chinese hamster ovary (CHO) clones. While constitutive CHO expression systems have proven their efficacy for the manufacturing of monoclonal antibodies, many next-generation therapeutics such as cytokines and bispecific antibodies as well as biological targets such as ectodomains of transmembrane receptors remain intrinsically challenging to produce. Herein, we exploited a cumate-inducible CHO platform allowing reduced expression of various classes of r-proteins during selection of stable pools. Following stable pool generation, fed-batch productions showed that pools generated without cumate (OFF-pools) were significantly more productive than pools selected in the presence of cumate (ON-pools) for 8 out of the 10 r-proteins tested, including cytokines, G-protein coupled receptors (GPCRs), the HVEM membrane receptor ectodomain, the multifunctional protein High Mobility Group protein B1 (HMGB1), as well as monoclonal and bispecific T-cell engager antibodies. We showed that OFF-pools contain a significantly larger proportion of cells producing high levels of r-proteins and that these cells tend to proliferate faster when expression is turned off, suggesting that r-protein overexpression imposes a metabolic burden on the cells. Cell viability was lower and pool recovery was delayed during selection of ON-pools (mimicking constitutive expression), suggesting that high producers were likely lost or overgrown by faster-growing, low-producing cells. We also observed a correlation between the expression levels of the GPCRs with Binding immunoglobulin Protein, an endoplasmic reticulum (ER) stress marker. Taken together, these data suggest that using an inducible system to minimize r-protein expression during stable CHO pool selection reduces cellular stresses, including ER stress and metabolic burden, leading to pools with greater frequency of high-expressing cells, resulting in improved volumetric productivity.


Asunto(s)
Anticuerpos Monoclonales , Citocinas , Cricetinae , Animales , Cricetulus , Células CHO , Proteínas Recombinantes/metabolismo
9.
J Biol Chem ; 299(5): 104676, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028767

RESUMEN

The insertion of the DNA sequence encoding SKIK peptide adjacent to the M start codon of a difficult-to-express protein enhances protein production in Escherichia coli. In this report, we reveal that the increased production of the SKIK-tagged protein is not due to codon usage of the SKIK sequence. Furthermore, we found that insertion of SKIK or MSKIK just before the SecM arrest peptide (FSTPVWISQAQGIRAGP), which causes ribosomal stalling on mRNA, greatly increased the production of the protein containing the SecM arrest peptide in the E. coli-reconstituted cell-free protein synthesis system (PURE system). A similar translation enhancement phenomenon by MSKIK was observed for the CmlA leader peptide, a ribosome arrest peptide, whose arrest is induced by chloramphenicol. These results strongly suggest that the nascent MSKIK peptide prevents or releases ribosomal stalling immediately following its generation during the translation process, resulting in an increase of protein production.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Péptidos , Ribosomas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptidos/genética , Biosíntesis de Proteínas , Ribosomas/metabolismo , Factores de Transcripción/metabolismo
10.
Front Bioeng Biotechnol ; 10: 880155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860329

RESUMEN

Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the "difficult-to express" protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.

11.
Front Microbiol ; 13: 894375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572669

RESUMEN

Hydrogenases are biotechnologically relevant metalloenzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. The O2-tolerant [NiFe]-hydrogenases from Cupriavidus necator (formerly Ralstonia eutropha) are of particular interest as they maintain catalysis even in the presence of molecular oxygen. However, to meet the demands of biotechnological applications and scientific research, a heterologous production strategy is required to overcome the low production yields in their native host. We have previously used the regulatory hydrogenase (RH) from C. necator as a model for the development of such a heterologous hydrogenase production process in E. coli. Although high protein yields were obtained, the purified enzyme was inactive due to the lack of the catalytic center, which contains an inorganic nickel-iron cofactor. In the present study, we significantly improved the production process to obtain catalytically active RH. We optimized important factors such as O2 content, metal availability, production temperature and time as well as the co-expression of RH-specific maturase genes. The RH was successfully matured during aerobic cultivation of E. coli by co-production of seven hydrogenase-specific maturases and a nickel permease, which was confirmed by activity measurements and spectroscopic investigations of the purified enzyme. The improved production conditions resulted in a high yield of about 80 mg L-1 of catalytically active RH and an up to 160-fold space-time yield in E. coli compared to that in the native host C. necator [<0.1 U (L d) -1]. Our strategy has important implications for the use of E. coli K-12 and B strains in the recombinant production of complex metalloenzymes, and provides a blueprint for the production of catalytically active [NiFe]-hydrogenases in biotechnologically relevant quantities.

12.
Methods Mol Biol ; 2406: 269-279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35089563

RESUMEN

Yeast's extracellular expression provides a cost-efficient means of producing recombinant proteins of academic or commercial interests. However, depending on the protein to be expressed, the production occasionally results in a poor yield, which is frequently accompanied with a deteriorated growth of the host. Here we describe our simple approach, high cell-density expression, to circumvent the cellular toxicity and achieve the production of a certain range of "difficult-to-express" secretory protein in preparative amount. The system features an ease of performing: (a) pre-cultivate yeast cells to the stationary phase in non-inducing condition, (b) suspend the cells to a small aliquot of inducing medium to form a high cell-density suspension or "a phalanx," then (c) give a sufficient aeration to the phalanx. Factors and pitfalls that affect the system's performance are also described.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Recuento de Células , Medios de Cultivo/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Metab Eng ; 69: 73-86, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34775077

RESUMEN

With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1ß in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1ß expression, only Blimp1ß expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1ß expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1ß expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1ß expressing rCHO cells and plasma cells. Blimp1ß expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1ß improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.


Asunto(s)
Células Plasmáticas , Factores de Transcripción , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Células Plasmáticas/metabolismo , Proteínas Recombinantes , Factores de Transcripción/genética
14.
Microb Cell Fact ; 20(1): 208, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717620

RESUMEN

Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and 'omics' based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cuerpos de Inclusión/metabolismo , Proteínas Recombinantes/biosíntesis , Solubilidad , Biotecnología/métodos , Escherichia coli/enzimología , Microbiología Industrial , Proyectos de Investigación
15.
Microb Cell Fact ; 20(1): 201, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663324

RESUMEN

BACKGROUND: Autoinduction systems can regulate protein production in Escherichia coli without the need to monitor cell growth or add inducer at the proper time following culture growth. Compared to classical IPTG induction, autoinduction provides a simple and fast way to obtain high protein yields. In the present study, we report on the optimization process for the enhanced heterologous production of the Ralstonia eutropha regulatory hydrogenase (RH) in E. coli using autoinduction. These autoinduction methods were combined with the EnPresso B fed-batch like growth system, which applies slow in situ enzymatic glucose release from a polymer to control cell growth and protein synthesis rate. RESULTS: We were able to produce 125 mg L-1 RH corresponding to a productivity averaged over the whole process time of 3 mg (L h)-1 in shake flasks using classic single-shot IPTG induction. IPTG autoinduction resulted in a comparable volumetric RH yield of 112 mg L-1 and due to the shorter overall process time in a 1.6-fold higher productivity of 5 mg (L h)-1. In contrast, lactose autoinduction increased the volumetric yield more than 2.5-fold and the space time yield fourfold reaching 280 mg L-1 and 11.5 mg (L h)-1, respectively. Furthermore, repeated addition of booster increased RH production to 370 mg L-1, which to our knowledge is the highest RH concentration produced in E. coli to date. CONCLUSIONS: The findings of this study confirm the general feasibility of the developed fed-batch based autoinduction system and provide an alternative to conventional induction systems for efficient recombinant protein production. We believe that the fed-batch based autoinduction system developed herein will favor the heterologous production of larger quantities of difficult-to-express complex enzymes to enable economical production of these kinds of proteins.


Asunto(s)
Cupriavidus necator/metabolismo , Escherichia coli/metabolismo , Hidrogenasas/biosíntesis , Proteínas Recombinantes/biosíntesis , Medios de Cultivo
16.
Front Chem ; 9: 664967, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336782

RESUMEN

Pseudomonas putida KT2440 has become an attractive chassis for heterologous expression with the development of effective genetic manipulation tools. Improving the level of transcriptional regulation is particularly important for extending the potential of P. putida KT2440 in heterologous expression. Although many strategies have been applied to enhance the heterologous expression level in P. putida KT2440, it was still at a relatively low level. Herein we constructed a T7-like expression system in P. putida KT2440, mimicking the pET expression system in Escherichia coli, which consisted of T7-like RNA polymerase (MmP1) integrated strain and the corresponding expression vector for the heterologous expression enhancement. With the optimization of the insertion site and the copy number of RNA polymerase (RNAP), the relative fluorescence intensity (RFI) of the super-folder green fluorescent protein (sfGFP) was improved by 1.4-fold in MmP1 RNAP integrated strain. The induction point and IPTG concentration were also optimized. This strategy was extended to the gene-reduced strain EM42 and the expression of sfGFP was improved by 2.1-fold. The optimal RNAP integration site was also used for introducing T7 RNAP in P. putida KT2440 and the expression level was enhanced, indicating the generality of the integration site for the T7 expression system. Compared to other inducible expression systems in KT2440, the heterologous expression level of the Mmp1 system and T7 system were more than 2.5 times higher. Furthermore, the 3.6-fold enhanced expression level of a difficult-to-express nicotinate dehydrogenase from Comamonas testosteroni JA1 verified the efficiency of the T7-like expression system in P. putida KT2440. Taken together, we constructed and optimized the T7-like and T7 expression system in P. putida, thus providing a set of applicable chassis and corresponding plasmids to improve recombinant expression level, expecting to be used for difficult-to-express proteins.

17.
Appl Microbiol Biotechnol ; 105(13): 5657-5674, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34180005

RESUMEN

Bacterial expression systems remain a widely used host for recombinant protein production. However, overexpression of recombinant target proteins in bacterial systems such as Escherichia coli can result in poor solubility and the formation of insoluble aggregates. As a consequence, numerous strategies or alternative engineering approaches have been employed to increase recombinant protein production. In this case study, we present the strategies used to increase the recombinant production and solubility of 'difficult-to-express' bacterial antigens, termed Ant2 and Ant3, from Absynth Biologics Ltd.'s Clostridium difficile vaccine programme. Single recombinant antigens (Ant2 and Ant3) and fusion proteins (Ant2-3 and Ant3-2) formed insoluble aggregates (inclusion bodies) when overexpressed in bacterial cells. Further, proteolytic cleavage of Ant2-3 was observed. Optimisation of culture conditions and changes to the construct design to include N-terminal solubility tags did not improve antigen solubility. However, screening of different buffer/additives showed that the addition of 1-15 mM dithiothreitol alone decreased the formation of insoluble aggregates and improved the stability of both Ant2 and Ant3. Structural models were generated for Ant2 and Ant3, and solubility-based prediction tools were employed to determine the role of hydrophobicity and charge on protein production. The results showed that a large non-polar region (containing hydrophobic amino acids) was detected on the surface of Ant2 structures, whereas positively charged regions (containing lysine and arginine amino acids) were observed for Ant3, both of which were associated with poor protein solubility. We present a guide of strategies and predictive approaches that aim to guide the construct design, prior to expression studies, to define and engineer sequences/structures that could lead to increased expression and stability of single and potentially multi-domain (or fusion) antigens in bacterial expression systems.


Asunto(s)
Productos Biológicos , Clostridioides difficile , Escherichia coli/genética , Proteínas Recombinantes de Fusión , Proteínas Recombinantes/genética , Solubilidad , Vacunas Sintéticas/genética
18.
Microorganisms ; 9(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073092

RESUMEN

Hydrogenases are abundant metalloenzymes that catalyze the reversible conversion of molecular H2 into protons and electrons. Important achievements have been made over the past two decades in the understanding of these highly complex enzymes. However, most hydrogenases have low production yields requiring many efforts and high costs for cultivation limiting their investigation. Heterologous production of these hydrogenases in a robust and genetically tractable expression host is an attractive strategy to make these enzymes more accessible. In the present study, we chose the oxygen-tolerant H2-sensing regulatory [NiFe]-hydrogenase (RH) from Ralstonia eutropha H16 owing to its relatively simple architecture compared to other [NiFe]-hydrogenases as a model to develop a heterologous hydrogenase production system in Escherichia coli. Using screening experiments in 24 deep-well plates with 3 mL working volume, we investigated relevant cultivation parameters, including inducer concentration, expression temperature, and expression time. The RH yield could be increased from 14 mg/L up to >250 mg/L by switching from a batch to an EnPresso B-based fed-batch like cultivation in shake flasks. This yield exceeds the amount of RH purified from the homologous host R. eutropha by several 100-fold. Additionally, we report the successful overproduction of the RH single subunits HoxB and HoxC, suitable for biochemical and spectroscopic investigations. Even though both RH and HoxC proteins were isolated in an inactive, cofactor free apo-form, the proposed strategy may powerfully accelerate bioprocess development and structural studies for both basic research and applied studies. These results are discussed in the context of the regulation mechanisms governing the assembly of large and small hydrogenase subunits.

19.
J Biotechnol ; 337: 35-45, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34171439

RESUMEN

Chinese hamster ovary (CHO) cells are the leading mammalian cell expression platform for biotherapeutic recombinant molecules yet some proteins remain difficult to express (DTE) in this, and other, systems. In recombinant cell lines expressing DTE proteins, cellular processes to restore proteostasis can be triggered when the folding and modification capabilities are exceeded, including the unfolded protein response and ER-associated degradation (ERAD) and proteasomal degradation. We therefore investigated whether the proteasome activity of CHO cells was linked to their ability to produce recombinant proteins. We found cell lines with diverse monoclonal antibody (mAb) productivity show different susceptibilities to inhibitors of proteasome activity. Subsequently, we applied selective pressure using proteasome inhibitors on mAb producing cells to determine the impact on cell growth and recombinant protein production, and to apply proteasome selective pressure above that of a metabolic selection marker during recombinant cell pool construction. The presence of proteasome inhibitors during cell pool construction expressing two different model molecules, including a DTE Fc-fusion protein, resulted in the generation of cell pools with enhanced productivity. The increased productivities, and ability to select for higher producing cells, has potential to improve clonal selection during upstream processes of DTE proteins.


Asunto(s)
Anticuerpos Monoclonales , Complejo de la Endopetidasa Proteasomal , Animales , Células CHO , Cricetinae , Cricetulus , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Recombinantes/genética
20.
Biotechnol Bioeng ; 118(9): 3533-3544, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33914903

RESUMEN

Intensified bioprocesses have caught industrial interest in the field of biomanufacturing in recent years. Thanks to new technology, intensified processes can support high cell densities, higher productivities and longer process times, which together can offer lower cost of goods. In this study two different intensified process modes, high cell density perfusion and enhanced fed-batch, were evaluated and compared with a conventional fed-batch process for a difficult-to-express therapeutic enzyme. The intensified process modes were cultivated with a target cell density of 100 × 106  cells/ml and with alternating tangential flow filtration, ATF, as cell retention device. The processes were designed to resemble an established optimized fed-batch process using the knowledge of this process without new dedicated optimization for the intensified modes. The design strategy included decision of the ratio of feed concentrate to base medium and glucose supplementation, which were based on target cell-specific consumption rates of key amino acids and glucose, using a targeted feeding approach (TAFE). A difficult-to-express therapeutic enzyme with multiple glycosylation sites was expressed and analyzed in the different production processes. The two new intensified processes both achieved 10 times higher volumetric productivity (mg/L/day) with retained protein quality and minor changes to the glycan profile compared to the fed-batch process. The study demonstrates the potential of using intensified processes for sensitive complex enzymes. It is shown here that it is possible to transfer a developed fed-batch process into high cell density processes either in intensified fed-batch or steady-state perfusion without new dedicated optimization. The results demonstrated as well that these intensified modes significantly increase the productivity while maintaining the desired product quality, for instance the same amount of product was obtained in 1 day during the perfusion process than in a whole fed-batch run. Without any prior optimization of the perfusion rate, the high cell density perfusion process resulted in only 1.2 times higher medium cost per gram produced protein.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Productos Biológicos , Reactores Biológicos , Enzimas , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo , Células CHO , Recuento de Células , Cricetulus , Enzimas/biosíntesis , Enzimas/química , Enzimas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA