Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962940

RESUMEN

BACKGROUND: In this work, water transition points (first transition: monolayer-multilayer water; and second transition: multilayer-free and solvent water) of different parts of jasmine rice including white rice, brown rice and bran were identified through the integration of sorption isotherm and dielectric properties data. Desorption isotherm data were fitted to four established models to select the optimal model for describing the sorption behaviors. Then, dielectric properties such as dielectric constant (ε') and dielectric loss factor (ε″) were measured across various moisture content levels within the frequency range of 200-20 000 MHz. RESULTS: A type III isotherm was observed for all samples and the Peleg model was the best fit with the experimental data. Monolayer moisture content of the samples, estimated using the GAB model, ranged from 3.25% to 4.17% dry basis. For dielectric properties, frequency and moisture dependencies were evident for all sample types. Moreover, the sorption isotherm models effectively described the relationship between water activity (aw) and dielectric properties as reflected by their goodness of fit, and their strong correlation through principal component analysis and Pearson's correlation results. CONCLUSION: The first water transition occurs at aw values of 0.11, 0.12, and 0.22, while the second transition appears at aw values of 0.9, 0.9 and 0.75-0.85 for white rice, brown rice and bran, respectively. This knowledge will be useful for food processors, providing insights into the optimization of food processing and storage conditions to extend food products' shelf life. © 2024 Society of Chemical Industry.

2.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891544

RESUMEN

Plant-derived PA10T is regarded as one of the most promising semi-aromatic polyamides; however, shortcomings, including low dimensional accuracy, high moisture absorption, and relatively high dielectric constant and loss, have impeded its extensive utilization. Polymer blending is a versatile and cost-effective method to fabricate new polymeric materials with excellent comprehensive performance. In this study, various ratios of PA10T/PPO blends were fabricated via melt blending with the addition of a SEBS-g-MAH compatibilizer. Molau test and scanning electron microscopy (SEM) were employed to study the influence of SEBS-g-MAH on the compatibility of PA10T and PPO. These studies indicated that SEBS-g-MAH effectively refines the domain size of the dispersed PPO phase and improves the dispersion stability of PPO particles within a hexafluoroisopropanol solvent. This result was attributed to the in situ formation of the SEBS-g-PA10T copolymer, which serves as a compatibilizer. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results showed that the melting-crystallization behavior and thermal stability of blends closely resembled that of pure PA10T. Dynamic mechanical analysis (DMA) revealed that as the PPO content increased, there was a decrease in the glass transition temperature and storage modulus of PA10T. The water absorption rate, injection molding shrinkage, dielectric properties, and mechanical strength of blends were also systematically investigated. As the PPO content increased from 10% to 40%, the dielectric loss at 2.5 GHz decreased significantly from 0.00866 to 0.00572, while the notched Izod impact strength increased from 7.9 kJ/m2 to 13.7 kJ/m2.

3.
J Colloid Interface Sci ; 665: 613-621, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552578

RESUMEN

The development of polymer film with large electrical displacement is essential for the applications of lightweight and compact energy storage. The dielectric diversity at interface of polymer composite should be addressed to realize the film capacitor with high energy density and dielectric reliability. In this work, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) nanocomposite was incorporated by core-shell nanowire with covalent organic framework (COF) outer coating to alleviate the dielectric mismatch at interface. After the preparation of Ag nanowire through polyol reduction, polyaniline (PANI) and COF layers were sequentially deposited to construct core-shell Ag@polyaniline@covalent organic framework (Ag@PANI@COF) nanowire. According to the unique core-shell architecture, the COF framework is utilized to suppress the remanent polarization while high electrical displacement is preserved by the center Ag nanowire. The maximum energy density of 25.0 J/cm3 at 425 MV/m is obtained in 0.1 wt% stretched Ag@PANI@COF/P(VDF-CTFE) nanocomposite. The presence of core-shell nanowire depresses the distribution distortion of electric field and the diffusion of charge carriers under high field. This work demonstrates an effective method to develop the polymer film with large electrical displacement, and sheds a light on insightful exploration of interfacial polarized mechanism in polymer dielectric composite.

4.
ACS Appl Mater Interfaces ; 15(50): 58828-58838, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051817

RESUMEN

Dielectric composites are widely used in power electronics, power systems, aerospace, and other fields due to their extremely high power density. However, if their energy density can be further increased, the application range will be greatly improved. Improving the dielectric constant of composites is one of the most effective ways to increase the energy density. In this study, a preparation method for copper calcium titanate nanowires (CCTO-NWs) with adjustable aspect ratio was investigated. Upon incorporation of these CCTO-NWs into the polymer matrix, the nanocomposites exhibit a significantly higher dielectric constant and a lower dielectric loss. In addition, a thin layer of Al2O3 with excellent thermal conductivity is coated on the surface of the CCTO-NWs to form a core-shell structure nanowire CCTO-NW@Al2O3. The introduction of the thermal conductive layer of Al2O3 not only creates a continuous heat transfer path within the dielectric composite, increasing the thermal conductivity of the composite from 0.11 W/(m·K) of pure HIPS to 1.12 W/(m·K), but also serves as a buffer layer between HIPS and CCTO-NWs, effectively alleviating the electric field distortion caused by the large difference in the dielectric constant between them, thereby optimizing the dielectric properties of the composite and reducing the dielectric permeability threshold from 30 to 20 vol %. This work provides an effective strategy for synergistically improving the dielectric constant and thermal conductivity of dielectric composites while also taking into account the good flexibility of polymer/ceramic nanocomposites.

5.
Heliyon ; 9(11): e22514, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034610

RESUMEN

As the presence of a percolating network formed by filler is indispensable for field grading composite, particulate fillers often result in high filler content that can be unfavorable in some aspects. The utilization of fillers with high aspect ratio is an effective way of reducing percolation threshold. In this work, Fe3O4 microplate (FMP) was prepared by a PVP-assisted hydrothermal method and it was adopted to fabricate composite films with different filler content by using polyetherimide (PEI) as the matrix. The composite film exhibited a percolation threshold of approximately 8 phr. The nonlinear coefficient measured 6.28 at a filler content of 10 phr. The nonlinearity in the conductive behavior of the composites was attributed to tunneling effect and Schottky emission. The filling of the FMP into PEI resulted in increase in dielectric constant and the dielectric loss maintained low. This study suggests that the FMP is a promising filler of low-filler-content field grading composite.

6.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37947688

RESUMEN

Dielectric capacitors have garnered significant attention in recent decades for their wide range of uses in contemporary electronic and electrical power systems. The integration of a high breakdown field polymer matrix with various types of fillers in dielectric polymer nanocomposites has attracted significant attention from both academic and commercial sectors. The energy storage performance is influenced by various essential factors, such as the choice of the polymer matrix, the filler type, the filler morphologies, the interfacial engineering, and the composite structure. However, their application is limited by their large amount of filler content, low energy densities, and low-temperature tolerance. Very recently, the utilization of two-dimensional (2D) materials has become prevalent across several disciplines due to their exceptional thermal, electrical, and mechanical characteristics. Compared with zero-dimensional (0D) and one-dimensional (1D) fillers, two-dimensional fillers are more effective in enhancing the dielectric and energy storage properties of polymer-based composites. The present review provides a comprehensive overview of 2D filler-based composites, encompassing a wide range of materials such as ceramics, metal oxides, carbon compounds, MXenes, clays, boron nitride, and others. In a general sense, the incorporation of 2D fillers into polymer nanocomposite dielectrics can result in a significant enhancement in the energy storage capability, even at low filler concentrations. The current challenges and future perspectives are also discussed.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37878782

RESUMEN

Molybdenum disulfide (MoS2) has become a new type of microwave absorption (MA) material due to the abundant functional groups and defects, high polarization effect, and controllable structural design. However, the development of MoS2 has been limited by its inherently low conductance losses and imperfect impedance matching. This study employs ammonium ion (NH4+) intercalation as a phase manipulation strategy to enhance dielectric loss and form heterogeneous structures by incorporating highly conductive 1T phase into the 2H-MoS2 crystal phase. Additionally, the implementation of CTAB as a soft template agent for constructing layered three-dimensional microsphere structures improves impedance matching. The experimental findings demonstrate that the MA performance of MoS2 can be effectively regulated by controlling the 1T phase content and morphological structure design. It is worth noting that A-MoS2-2 possesses excellent multifrequency absorption capability. A-MoS2-2 has a minimum reflection loss (RL) of -53 dB at a coating thickness of 1.99 mm and an effective absorption bandwidth (EAB) of 5.6 GHz at a thinner coating thickness of 1.77 mm. This work improves the MA properties of MoS2 by introducing metallic phases and unique structural design, which opens up new ideas for the development of MA materials.

8.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762362

RESUMEN

Developing highly efficient and multifunctional epoxy resins (EPs) that overcome the shortcomings of flammability and brittleness is crucial for pursuing sustainable and safe application but remains a huge challenge. In this paper, a novel biomass-containing intumescent flame retardant containing a rigid-flexible and multi-siloxane bridge structure (DPB) was synthesized using siloxane; 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO); and biomass vanillin. DPB could facilitate the formation of a carbon residual with an intumescent structure, which effectively blocked the propagation of heat and oxygen. As a result, the peak heat release rate (pHRR) and total heat release (THR) of DPB/EP-7.5 decreased by 38.8% and 45.0%, respectively. In terms of mechanical properties, the tensile and flexural elongations at break of DPB/EP-7.5 increased by 77.2% and 105.3%, respectively. Impressively, DPB/EP-7.5 had excellent dielectric properties, with a dielectric constant of 2.5-2.9. This was due to the Si-O bonds (multi-siloxane bridges) contained in DPB/EP, which can quench the polarization behavior of the hydroxyl group. This paper provides a facile strategy for the preparation of multifunctional EP, which will pave the way for the promotion and application of EP in the high-end field.


Asunto(s)
Resinas Epoxi , Siloxanos , Animales , Biomasa , Carbono , Estro
9.
J Phys Condens Matter ; 35(46)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37531969

RESUMEN

In this review, an overview of acoustic- and radio-frequency frequency dielectric properties of multiferroic oxides, the significant dynamic response of electrical polarization to small external ac electrical fields, are present based on the reports in literatures and our recent experimental progresses. The review is begun with some basic terms, concepts and mechanisms associated with dielectric response and dielectric anomalies, namely dielectric peak and plateau upon varying temperatures and dielectric relaxations upon varying frequencies. Subsequently, a variety of quantitative analyses and descriptions of various dielectric effects, including dielectric relaxation, relaxational and transport dynamics, ac conductivity, equivalent circuit models and impedance spectroscopy, are summarized in details. Next is the kernel section. We thoroughly outline various physical mechanisms behind acoustic-/radio-frequency dielectric responses and anomalies of multiferroic oxides. Spin order transition/spin rotation, charge disorder-order transition, exchange striction of the spin interactions, spin-dependentp-dhybridization mechanism, quantum electric-dipole liquids, the interaction of spin order and quantum paraelectric, the motions of charged defects and carriers, quasi-intrinsic and extrinsic heterogeneous interfaces, polar relaxor and multiglass, ferroic domain wall/boundary motions, etc, are involved in these mechanisms. Meanwhile, particular emphasis is placed on intrinsic or extrinsic magnetodielectric effects and related mechanisms in multiferroic oxides. Finally, the review ends with a short perspective of future dielectric research in multiferroic oxides. This review is able to provide the detailed and unique insights into abundant underlying fundamental physics in multiferroic oxides as well as the potential multiferroics-based technological applications.

10.
Materials (Basel) ; 16(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37374572

RESUMEN

The structural changes and very-low-frequency (VLF) nonlinear dielectric responses are measured to evaluate the aging state of cross-linked polyethylene (XLPE) in power cables under various thermal aging conditions. For this purpose, the accelerated thermal aging experiments were performed on XLPE insulation materials at 90 °C, 120 °C and 150 °C with different durations of 240 h, 480 h and 720 h, respectively. The Fourier transform infrared spectrum (FTIR) characterization and differential scanning calorimeter (DSC) were tested to analyze the influence of different aging on physicochemical properties of XLPE insulation. Besides, the VLF dielectric spectra show that the permittivity and dielectric loss change significantly in the VLF range from 1 mHz to 0.2 Hz. A voltage-current (U-I) hysteresis curve referring to a standard sinusoidal voltage and the response current were introduced to characterize the nonlinear dielectric properties of XLPE insulation caused by thermal aging.

11.
ACS Nano ; 17(13): 12510-12518, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350557

RESUMEN

Metal-organic frameworks (MOFs) manifest enormous potential in promoting electromagnetic wave (EMW) absorption thanks to the tailored components, topological structure, and high porosity. Herein, rodlike conductive MOFs (cMOFs) composed of adjustable metal ions of Zn, Cu, Co, or Ni and ligands of hexahydroxytriphenylene (HHTP) are prepared to attain tunable dielectric properties for a tailored EMW absorption. Specifically, the influences of the cMOFs' composition, charge transport characteristic, topological crystalline structure, and anisotropy microstructure on dielectric and EMW absorption performance are ascertained, advancing the understanding of EMW attenuation mechanisms of MOFs. The boosted conductive and polarization losses derived from the conjugation effects and terminal groups, as well as shape anisotropy, lead to a prominent EMW absorption of the cMOFs. The Cu-HHTP confers a minimum reflection loss (RLmin) of -63.55 dB at the thickness of 2.9 mm and a maximum effective absorption bandwidth of 5.2 GHz. Moreover, Zn-HHTP showcases the absorption superiority in the S-band (2-4 GHz) with an RLmin of -62.8 dB at a thickness of 1.9 mm. This work not only hoists the mechanistic understanding of the structure-function relationships for the cMOFs but also offers guidelines for preparing functional MOF materials.

12.
Nanomicro Lett ; 15(1): 154, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291440

RESUMEN

The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time, including thin-film capacitors. The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material. However, it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously. Considering that boron nitride nanosheets (BNNS) possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure, a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate (PET) films. By revealing the bandgap and insulating behavior with UV absorption spectrum, leakage current, and finite element calculation, it is manifested that nanocoating contributes to enhance the bandgap of polymer films, thereby suppressing the charge injection by redirecting their transport from electrodes. Worthy to note that an ultrahigh breakdown field strength (~ 736 MV m-1), an excellent discharge energy density (~ 8.77 J cm-3) and a prominent charge-discharge efficiency (~ 96.51%) are achieved concurrently, which is ascribed to the contribution of BNNS ultrathin layer. In addition, the modified PET films also have superior comprehensive performance at high temperatures (~ 120 °C). The materials and methods here selected are easily accessible and facile, which are suitable for large-scale roll-to-roll process production, and are of certain significance to explore the methods about film modification suitable for commercial promotion.

13.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985509

RESUMEN

As a common two-dimensional carbon material, graphene has been widely doped into polymers to prepare high-performance dielectric materials. However, the shortcomings of graphene, such as large specific surface area and poor dispersion, limit its further application. Therefore, in this work, to solve the problem regarding the uniform dispersion of graphene in the matrix, in situ polymerization was used to prepare graphene/polyimide films, in which 1,4-diiodobutane was used as a reduction agent to prevent the aggregation of graphene oxide (GO) during imidization. High dielectric constant composite films were obtained by adjusting the ratio of 1,4-diiodobutane in GO. The results show that the resulting graphene/polyimide composite film possessed a dielectric constant of up to 197.5, which was more than 58 times higher than that of the polyimide (PI) film. Furthermore, compared to the pure PI film, the composite films showed better thermal stability and mechanical properties. Thermal performance tests showed that the 1,4-diiodobutane added during the preparation of the composite film was thermally decomposed, and there was no residue. We believe our preparation method can be extended to other high dielectric composite films, which will facilitate their further development and application in high power density energy storage materials.

14.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231900

RESUMEN

A fluorine-containing main-chain benzoxazine (BAF-M-TB) was co-cured with biphenyl epoxy for the integrated circuit industry. The benzoxazine precursor was synthesized using 4,4'-(Hexafluoroisopropylidene)diphenol (bisphenol AF), 2,2'-Dimethyl-[1,1'-biphenyl]-4,4'-Diamine(M-TB), and paraformaldehyde. In addition, the 3,3'-(Oxybis(4,1-phenylene))bis(3,4-dihydro-2H-benzo[e][1,3]oxazine) (Benoxazine ODA-BOZ), which is a commercialized benzoxazine, was co-cured with biphenyl epoxy as a control. The two co-curing systems were referred to as EP/BAF-M-TB and EP/ODA-BOZ. The curing kinetics, rheological behavior, and thermal stability of the two co-curing systems were studied. Poly-EP/BAF-M-TB and poly-EP/ODA-BOZ quartz fiber cloth reinforced composites (QFRPs) were prepared using the prepreg laminating method in order to determine their mechanical, thermal, and dielectric properties. Both of them showed good thermal properties and dielectric properties. The dielectric constant of poly-EP/BAF-M-TB QFRP is in the range of 3.25-3.54 at the low frequency of 10 kHz-10 MHz. At the high frequency of 5 GHz, its dielectric constant is 3.16, which is better than that of poly-EP/ODA-BOZ QFRP. Additionally, the Td5 of poly-EP/BAF-M-TB was 398 °C in a nitrogen atmosphere, which is higher than that of poly-EP/ODA-BOZ.

15.
Foods ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36496633

RESUMEN

Fruit quality attributes interrelate with their dielectric properties, but such interrelationships in sea buckthorn berries under differing freezing regimes remain uninvestigated. Sea buckthorn (Hipophae rhamnoides L., cv. Shenqiuhong) berries were frozen at different temperatures (-13, -30, -35 and -40 °C) and stored for different periods (15, 30, 45, 60, 75 and 90 d). Seven quality attributes and nine dielectric parameters were measured to evaluate the effect of different frozen storage regimes on those attributes and parameters. The results showed that shorter time and lower temperature contributed to the preservation of berries quality. The dielectric parameters values increased with decreasing temperature and with the increase of freezing duration. The quality prediction models were established by the principal component analysis of the dielectric properties at characteristic frequency. The results are expected to provide a way to evaluate quality of frozen sea buckthorn berries by dielectric properties.

16.
Materials (Basel) ; 15(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431538

RESUMEN

In this work, novel MgCu2Nb2O8 (MCN) ceramics were synthesized by the two-step sintering (TSS) technique, and the phase composition, crystal structures, and microwave dielectric properties were comprehensively studied. X-ray diffraction (XRD) and Raman analysis demonstrated that MCN ceramics are multi-phase ceramics consisting of MgNb2O6 and CuO phases. X-ray photoelectron spectroscopy (XPS) was utilized to investigate the chemical composition and element valence of MgCu2Nb2O8 ceramics. Scanning electron microscopy (SEM) analysis demonstrated dense microstructures in the MCN ceramics prepared at a sintering temperature of 925 °C. The microwave dielectric properties were largely affected by the lattice vibrational modes and densification level of the ceramics. The outstanding microwave dielectric properties of εr = 17.15, Q × f = 34.355 GHz, and τf = -22.5 ppm/°C were obtained for the MCN ceramics sintered at 925 °C, which are results that hold promise for low temperature co-fired ceramic (LTCC) applications.

17.
Molecules ; 27(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36432166

RESUMEN

In this study, a fluorine-containing flow modifier (Si-DF) with low surface energy is successfully synthesized, which is applied to fabricate ideal electronic packaging materials (BN/PPS composites) with high thermal conductivity, excellent dielectric properties, processability, and toughness by conventional melt blending. Si-DPF is located at the interface between the BN fillers and the PPS matrix, which not only improves the dispersion of BN fillers but also strengthens the interaction. With the help of 5 wt% Si-DF, BN/PPS/Si-DF (70/25/5) still exhibits the high thermally conductive coefficient (3.985 W/m·K) and low dielectric constant (3.76 at 100 MHz) although BN fillers are loaded as high as 70 wt%. Moreover, the sample processes a lower stable torque value (2.5 N·m), and the area under the stress-strain curves is also increased. This work provides an efficient way to develop high-performance polymer-based composites with high thermally conductive coefficients and low dielectric constants for electronic packaging applications.

18.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36297907

RESUMEN

A novel calcium copper titanate (CaCu3Ti4O12)-polyvinylidene fluoride composite (CCTO@PVDF) with Cu-deficiency was successfully prepared through the molten salt-assisted method. The morphology and structure of polymer composites uniformly incorporated with CCTO nanocrystals were characterized. At the same volume fraction, the CCTOs with Cu-deficiency displayed higher dielectric constants than those without post-treatment. A relatively high dielectric constant of 939 was obtained at 64% vol% CCTO@PVDF content, 78 times that of pure PVDF. The high dielectric constants of these composites were attributed to the homogeneous dispersion and interfacial polarization of the CCTO into the PVDF matrix. These composites also have prospective applications in high-frequency regions (106 Hz). The enhancement of the dielectric constant was predicted in several theoretical models, among which the EMT and Yamada models agreed well with the experimental results, indicating the excellent distribution in the polymer matrix.

19.
Food Chem X ; 15: 100364, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35761882

RESUMEN

Colostrum samples of recently registered cow breed "Himachali Pahari" were assorted from high altitude zone (901-2200 m). Prepared bovine colostrum whey powder (BCWP) was analysed for chemical composition, amino acids, minerals, surface morphology (SEM-EDS), FTIR and dielectric properties. Results showed that freeze-dried BCWP contained a considerable amount of nutritional parameters viz IgG (18.55 g/100 g), protein (71.72 g/100 g) and total amino acids (69.64 g/100 g). Additionally, the concentration of essential minerals was found to be adequate, and there was no presence of heavy metals. The BCWP exhibits good dielectric properties (resistance ∼57 M-Ω). SEM-EDS showed the broken up-wards layer structure with the uniform distribution of minerals on the surface. The FTIR spectra confirmed the presence of a higher proportion of ß-sheets and ß-turn structures in BCWP. Thus, on account of good functional and nutritive properties, BCWP could be foreseen as the future of functional food.

20.
Materials (Basel) ; 15(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35591406

RESUMEN

At high temperatures, the insulation performance of polypropylene (PP) decreases, making it challenging to meet the application requirements of metallized film capacitors. In this paper, the dielectric performance of PP is improved by long-chain branching modification and adding different kinds of nucleating agents. The added nucleating agents are organic phosphate nucleating agent (NA-21), sorbitol nucleating agent (DMDBS), rare earth nucleating agent (WBG-Ⅱ) and acylamino nucleating agent (TMB-5). The results show that the long-chain branches promote heterogeneous nucleation and inhibit the motion of molecular chains, thereby enhancing the dielectric properties at high temperatures. Nucleating agents modulate the crystalline morphology of long-chain branched polypropylene (LCBPP), which leads to a decrease in the mean free path of carriers and an increase in trap energy level and trap density. Therefore, the conductivity is reduced and the breakdown strength is improved. Among the added nucleating agents, NA-21 showed a significant improvement in the electrical properties of LCBPP films. At 125 °C, compared with PP, the breakdown strength of the modified film is increased by 26.3%, and the energy density is increased by 66.1%. This method provides a reference for improving the dielectric properties of PP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA