Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 286(1911): 20191645, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31551055

RESUMEN

Diel vertical migration (DVM), the daily movement of organisms through oceanic water columns, is mainly driven by spatio-temporal variations in the light affecting the intensity of predator-prey interactions. Migration patterns of an organism are intrinsically linked to the distribution of its conspecifics, its prey and its predators, each with their own fitness-seeking imperatives. We present a mechanistic, trait-based model of DVM for the different components of a pelagic community. Specifically, we consider size, sensory mode and feeding mode as key traits, representing a community of copepods that prey on each other and are, in turn, preyed upon by fish. Using game-theoretic principles, we explore the optimal distribution of the main groups of a planktonic pelagic food web simultaneously. Within one single framework, our model reproduces a whole suite of observed patterns, such as size-dependent DVM patterns of copepods and reverse migrations. These patterns can only be reproduced when different trophic levels are considered at the same time. This study facilitates a quantitative understanding of the drivers of DVM, and is an important step towards mechanistically underpinned predictions of DVM patterns and biologically mediated carbon export.


Asunto(s)
Migración Animal , Copépodos/fisiología , Cadena Alimentaria , Modelos Estadísticos , Animales , Teoría del Juego , Océanos y Mares , Plancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA