RESUMEN
Lupinus mutabilis (LM) is a legume part of Bolivian traditional diet that has a nutraceutical property reducing blood glucose levels. The prevalence of type 2 diabetes is increasing worldwide thus; the search for novel anti-diabetic drugs is needed. Based on its traditional use, we evaluated the anti-diabetic effect of LM in the spontaneously diabetic Goto-Kakizaki (GK) rat, a model of type 2 diabetes and in Wistar (W) rats as healthy control. LM seeds hydroethanolic extract, analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography-high resolution mass spectrometry, is a complex mixture of volatile and non-volatile components. A single oral administration of LM extract (2000 mg/kg b.w.) improved glucose tolerance during the oral glucose tolerance test (OGTT) (30â»120 min) in GK and W rats (p < 0.0001). The long-term treatment with LM (1000 mg/kg b.w.), for 21 days, improved the area under the curve (AUC) of glucose during OGTT at day 20, in both GK (p < 0.01) and W rats (p < 0.01). The HbA1c (GK rats, p < 0.05 and W rats, p < 0.0001) and the non-fasting glucose (GK rats, p < 0.05) were also reduced. LM increased both serum insulin levels (2.4-fold in GK rats and 2.5-fold W rats), and the glucose-induced (16.7 mM glucose) insulin release in isolated islets from treated animals (6.7-fold in GK rats, and 6.6-fold in W rats). Moreover, LM (10 mg/mL) stimulated in vitro glucose induced (16.7 mM glucose) insulin release in batch incubated GK and W rat islets (p < 0.0001). In perifused GK rat islets, insulin release in 16.7 mM glucose was increased 95.3-fold compared to untreated islets (p < 0.0001), while no significant differences were found in perifused W rat islets. The LM mechanism of action, evaluated using inhibitory compounds of the insulin secretion pathway, showed that LM-dependent insulin secretion was reduced 42% by diazoxide (p < 0.001), 70% by nifedipine (p < 0.001), 86.7% by H89 (p < 0.0001), 70.8% by calphostine-C (p < 0.0001) and 93% by pertussis toxin (p < 0.0001). A similar effect was observed in W rats islets. Our findings provide evidence that LM has an anti-diabetic effect through stimulation of insulin release. The effect is-dependent on L-type calcium channel, protein kinase A and C systems, and G protein-coupled exocytosis and is partially mediated by K-ATP channels.
Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Lupinus , Fitoterapia , Animales , Área Bajo la Curva , Canales de Calcio Tipo L/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Exocitosis , Prueba de Tolerancia a la Glucosa , Hemoglobina Glucada/metabolismo , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Canales KATP/metabolismo , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas WistarRESUMEN
Diabetes Mellitus Type 2 prevalence is increasing worldwide; thus efforts to develop novel therapeutic strategies are required. Amaranthus caudatus (AC) is a pseudo-cereal with reported anti-diabetic effects that is usually consumed in food preparations in Bolivia. This study evaluated the anti-diabetic nutraceutical property of an AC hydroethanolic extract that contains mainly sugars and traces of polyphenols and amino acids (as shown by nalysis with liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)), in type 2 diabetic Goto-Kakizaki (GK) rats and healthy Wistar (W) rats. A single oral administration of AC extract (2000 mg/kg body weight) improved glucose tolerance during Oral Glucose Tolerance Tests (OGTT) in both GK rats and in W rats. Long-term treatment (21 days) with AC (1000 mg/kg b.w.) improved the glucose tolerance evaluated by the area under the curve (AUC) of glucose levels during the OGTT, in both GK and W rats. The HbA1c levels were reduced in both GK (19.83%) and W rats (10.7%). This effect was secondary to an increase in serum insulin levels in both GK and W rats and confirmed in pancreatic islets, isolated from treated animals, where the chronic AC exposure increased the insulin production 4.1-fold in GK and 3.7-fold in W rat islets. Furthermore, the effect of AC on in vitro glucose-dependent insulin secretion (16.7 mM glucose) was concentration-dependent up to 50 mg/mL, with 8.5-fold increase in GK and 5.7-fold in W rat islets, and the insulin secretion in perifused GK and W rat islets increased 31 and nine times, respectively. The mechanism of action of AC on insulin secretion was shown to involve calcium, PKA and PKC activation, and G-protein coupled-exocytosis since the AC effect was reduced 38% by nifedipine (L-type channel inhibitor), 77% by H89 (PKA inhibitor), 79% by Calphostine-C (PKC inhibitor) and 20% by pertussis toxin (G-protein suppressor).