Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
EJNMMI Radiopharm Chem ; 9(1): 63, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192050

RESUMEN

BACKGROUND: Selection of the most promising radiotracer candidates for radiolabeling is a difficult step in the development of radiotracer pharmaceuticals, especially for the brain. Mass spectrometry (MS) is an alternative to study ex vivo the characteristics of candidates, but most MS studies are complicated by the pharmacologic doses injected and the dissection of regions to study candidate biodistribution. In this study, we tested the ability of a triple quadrupole analyzer (TQ LC-MS/MS) to quantify low concentrations of a validated precursor of a radiotracer targeting the DAT (LBT-999) in dissected regions. We also investigated its biodistribution on brain slices using MS imaging with desorption electrospray ionization (DESI) coupled to time-of-flight (TOF) vs. TQ mass analyzers. RESULTS: TQ LC-MS/MS enabled quantification of LBT-999 injected at sub-tracer doses in dissected striata. DESI-MS imaging (DESI-MSI) with both analyzers provided images of LBT-999 biodistribution on sagittal slices that were consistent with positron emission tomography (PET). However, the TOF analyzer only obtained biodistribution images at a high injected dose of LBT-999, while the TQ analyzer provided biodistribution images at lower injected doses of LBT-999 with a better signal-to-noise ratio. It also allowed simultaneous visualization of endogenous metabolites such as dopamine. CONCLUSIONS: Our results show that LC-TQ MS/MS in combination with DESI-MSI can provide important information (biodistribution, specific and selective binding) that can facilitate the selection of the most promising candidates for radiolabeling and support the development of radiotracers.

2.
J Pharm Biomed Anal ; 251: 116446, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197207

RESUMEN

In traditional Chinese medicinal practices, Gegen (GG) and Tianma (TM) are widely utilized for headache relief, but their material basis has not been comprehensively characterized. This research utilized ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) for precise determination of Gegen-Tianma's (GGTM) material composition, and employed desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) to pinpoint the brain-absorbed components and various metabolites post oral administration to rats. A total of 80 chemical constituents were identified from GGTM, 11 prototypes and 18 metabolites were identified from plasma. The brain tissue was identified in total 4 prototypes and 5 metabolites, these constituents were basically located in the prefrontal cortex and thalamus. The absorption patterns of components in the rat brain aligned with the varied distribution of metabolites within the brain. This study provides a solid theoretical basis for in-depth exploration of potential drug targets and elucidation of the specific mechanism of action of GGTM in the treatment of migraine.


Asunto(s)
Encéfalo , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray , Animales , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Ratas , Cromatografía Líquida de Alta Presión/métodos , Masculino , Encéfalo/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Administración Oral , Corteza Prefrontal/metabolismo , Distribución Tisular
3.
Environ Sci Technol ; 58(31): 13986-13994, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38992920

RESUMEN

Previous studies have highlighted the toxicity of pharmaceuticals and personal care products (PPCPs) in plants, yet understanding their spatial distribution within plant tissues and specific toxic effects remains limited. This study investigates the spatial-specific toxic effects of carbamazepine (CBZ), a prevalent PPCP, in plants. Utilizing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), CBZ and its transformation products were observed predominantly at the leaf edges, with 2.3-fold higher concentrations than inner regions, which was confirmed by LC-MS. Transcriptomic and metabolic analyses revealed significant differences in gene expression and metabolite levels between the inner and outer leaf regions, emphasizing the spatial location's role in CBZ response. Notably, photosynthesis-related genes were markedly downregulated, and photosynthetic efficiency was reduced at leaf edges. Additionally, elevated oxidative stress at leaf edges was indicated by higher antioxidant enzyme activity, cell membrane impairment, and increased free fatty acids. Given the increased oxidative stress at the leaf margins, the study suggests using in situ Raman spectroscopy for early detection of CBZ-induced damage by monitoring reactive oxygen species levels. These findings provide crucial insights into the spatial toxicological mechanisms of CBZ in plants, forming a basis for future spatial toxicology research of PPCPs.


Asunto(s)
Carbamazepina , Carbamazepina/toxicidad , Hojas de la Planta/efectos de los fármacos , Estrés Oxidativo , Multiómica
4.
SLAS Technol ; 29(4): 100163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39047813

RESUMEN

Over the last 5 years, IR-MALDESI-MS (Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry) has been demonstrated for use in a range of high-throughput biochemical and cellular assays with remarkable sample acquisition rates up to 22 Hz for a single 384-well assay plate. With such high single plate acquisition rates, the rate limiting step becomes how fast subsequent plates can be presented to the MS for analysis. To make this transfer as fast as possible while maintaining safe operation in a laboratory environment, we developed a collaborative robotic plate transfer system (CRPTS) that combines a 6-axis robot with dual plate grippers, a 7th axis conveyor stage, and a 420-plate capacity sample loading window. As a demonstration of the throughput and flexibility of CRPTS, we performed a biochemical assay that monitored the oxidation of tris(2-carboxyethyl)phosphine (TCEP) to screen for nuisance compounds. Using continuous and step motion scan profiles, we analyzed 158,799 compounds contained in 448 assay plates over the course of 12.5 h (Z-Factor=0.87) and 17.5 h (Z-factor=0.99), respectively. Extrapolating these results enables the screening of a million compounds within 6-7 working days.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Robótica , Robótica/instrumentación , Robótica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
5.
Mass Spectrom Rev ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056172

RESUMEN

This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization-mass spectrometry (DESI-MS). Related ambient ionization techniques are discussed in comparison to DESI-MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano-DESI currently exceed those of DESI-MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI-MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI-MS is justified.

6.
J Mass Spectrom ; 59(7): e5065, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866597

RESUMEN

Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization mass spectrometry imaging (MSI) approach that enables spatial mapping of biological and environmental samples with high spatial resolution and throughput. Because nano-DESI has not yet been commercialized, researchers develop their own sources and interface them with different commercial mass spectrometers. Previously, several protocols focusing on the fabrication of nano-DESI probes have been reported. In this tutorial, we discuss different hardware requirements for coupling the nano-DESI source to commercial mass spectrometers, such as the safety interlock, inlet extension, and contact closure. In addition, we describe the structure of our custom software for controlling the nano-DESI MSI platform and provide detailed instructions for its usage. With this tutorial, interested researchers should be able to implement nano-DESI experiments in their labs.

7.
J Am Soc Mass Spectrom ; 35(5): 960-971, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616559

RESUMEN

In Asia, some herbal preparations have been found to be adulterated with undeclared synthetic medicines to increase their therapeutic efficiency. Many of these adulterants were found to be toxic when overdosed and have been documented to bring about severe, even life-threatening acute poisoning events. The objective of this study is to develop a rapid and sensitive ambient ionization mass spectrometric platform to characterize the undeclared toxic adulterated ingredients in herbal preparations. Several common adulterants were spiked into different herbal preparations and human sera to simulate the clinical conditions of acute poisoning. They were then sampled with a metallic probe and analyzed by the thermal desorption-electrospray ionization mass spectrometry. The experimental parameters including sensitivity, specificity, accuracy, and turnaround time were prudently optimized in this study. Since tedious and time-consuming pretreatment of the sample is unnecessary, the toxic adulterants could be characterized within 60 s. The results can help emergency physicians to make clinical judgments and prescribe appropriate antidotes or supportive treatment in a time-sensitive manner.


Asunto(s)
Contaminación de Medicamentos , Preparaciones de Plantas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Humanos , Preparaciones de Plantas/análisis , Preparaciones de Plantas/química , Servicios Médicos de Urgencia/métodos
8.
Food Res Int ; 181: 114136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448105

RESUMEN

To achieve an integrative understanding of the spatial distribution and chronological flavoring compounds accumulation, desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) and multi-omics techniques were performed on the leaf samples collected from the enzymatic-catalyzed-process (ECP) stage of Tieguanyin oolong tea manufacturing. The result of DESI-MSI visualization indicated transform or re-distribution of catechins, flavonols and amino acids were on-going attributing to the multi-stress over ECP stage. Out of identified 2621 non-volatiles and 45,771 transcripts, 43 non-volatiles and 12 co-expressed pathways were screened out as biomarkers and key cascades in response to adverse conditions. The targeted metabolic analysis on the characteristic flavoring compounds showed that the accumulations of free amino acids were enhanced, while catechins, flavonol glycosides, and alkaloids exhibited dynamic changes. This result suggests withering and turning-over process are compatible and collectively regulate the metabolic accumulation and development of flavoring metabolites, facilitating to the development of characteristic quality of Tieguanyin tea.


Asunto(s)
Aminoácidos , Catequina , Comercio , Flavonoles , Aromatizantes , Catálisis ,
9.
J Neurochem ; 168(7): 1175-1178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38372595

RESUMEN

Alzheimer's disease (AD) affects one in eight individuals over 65 and poses an immense societal challenge. AD pathology is characterized by the formation of beta-amyloid plaques and Tau tangles in the brain. While some disease-modifying treatments targeting beta-amyloid are emerging, the exact chain of events underlying the pathogenesis of this disease remains unclear. Brain lipids have long been implicated in AD pathology, though their role in AD pathogenesis remains not fully resolved. Significant advancements in mass spectrometry imaging (MSI) allow to detail spatial lipid regulations in biological tissues at the low um scale. In this issue, Huang et al. resolve spatial lipid patterns in human AD brain and genetic mouse models using desorption electrospray ionization (DESI)-based MSI integrated with other spatial techniques such as imaging mass cytometry of correlative protein signatures. Those spatial multiomics experiments identify plaque-associated lipid regulations that are dependent on progressing plaque pathology in both mouse models and the human brain. Of those lipid species, particularly pro-inflammatory lysophospholipids have been implicated in AD pathology through their interaction with both aggregating Aß and microglial activation through lipid sensing surface receptors. Together, this study provides further insight into how brain lipid homeostasis is linked to progressing AD pathology, and thereby highlights the potential of MSI-based spatial lipidomics as an emerging spatial biology technology for biomedical research.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Metabolismo de los Lípidos , Lípidos/análisis , Placa Amiloide/patología , Placa Amiloide/metabolismo
10.
Dev Cell ; 59(7): 869-881.e6, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38359832

RESUMEN

Spatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the transient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion beam secondary ion mass spectrometry imaging ([H2O]n>28K-GCIB-SIMS) at ≤3 µm resolution using a cryogenic imaging workflow. This allowed multiple biomolecular imaging modes on the near-native-state liver at single-cell resolution. Our workflow utilizes desorption electrospray ionization (DESI) to build a reference map of metabolic heterogeneity and zonation across liver functional units at tissue level. Cryogenic dual-SIMS integrated metabolomics, lipidomics, and proteomics in the same liver lobules at single-cell level, characterizing the cellular landscape and metabolic states in different cell types. Lipids and metabolites classified liver metabolic zones, cell types and subtypes, highlighting the power of spatial multi-omics at high spatial resolution for understanding celluar and biomolecular organizations in the mammalian liver.


Asunto(s)
Fenómenos Bioquímicos , Lipidómica , Animales , Lipidómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos/análisis , Hígado , Mamíferos
11.
Anal Bioanal Chem ; 416(8): 1883-1906, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367042

RESUMEN

In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC-MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive-negative ion mode with a spatial resolution of 100 µm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.


Asunto(s)
Cordyceps , Distribución Tisular , Espectrometría de Masas , Cordyceps/química , Cordyceps/metabolismo , Nucleósidos/química , Ácidos Grasos/metabolismo , Aminoácidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-38330520

RESUMEN

Paralytic shellfish poisoning (PSP) is the most widespread and harmful form of shellfish poisoning with high mortality rate. In this study, a combined desorption electrospray ionization mass spectrometry (DESI-MS) and ultra-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-QqQ/MS) method was established for the detection of PSPs in urine. The method was optimized using a spray solution of methanol and water (1:1, v/v) containing 0.1 % FA, at a flow rate of 2.5 µL·min-1 and an applied voltage of 3 kV. The limit of detection (LOD) for PSPs detection by DESI-MS was in the range of 87-265 µg·L-1, which basically meets the requirements for the rapid screening of PSPs. The LOD for UPLC-QqQ/MS was in the range of 2.2-14.9 µg·L-1, with a limit of quantification (LOQ) of 7.3-49.7 µg·L-1, thus fulfilling the quantitative demand for PSPs in urine. Finally, after spiking the urine samples of six volunteers with PSPs to a concentration of 100 µg·L-1, DESI-MS successfully and efficiently detected the positive samples. Subsequently, UPLC-QqQ/MS was employed for precise quantification, yielding results in the range of 84.6-95.1 µg·L-1. The experimental findings demonstrated that the combination of DESI-MS and UPLC-QqQ/MS enables high-throughput, rapid screening of samples and accurate quantification of positive samples, providing assurance for food safety and human health.


Asunto(s)
Intoxicación por Mariscos , Humanos , Cromatografía Líquida de Alta Presión/métodos , Intoxicación por Mariscos/diagnóstico , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Límite de Detección
13.
Anal Bioanal Chem ; 416(1): 125-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37872415

RESUMEN

In situ separation and visualization of synthetic and naturally occurring isomers from heterogeneous plant tissues, especially when they share similar molecular structures, are a challenging task. In this study, we combined the ion mobility separation with desorption electrospray ionization mass spectrometry imaging (DESI-IM-MSI) to achieve a direct separation and visualization of two synthetic auxin derivatives, auxinole and its structural isomer 4pTb-MeIAA, as well as endogenous auxins from Arabidopsis samples. Distinct distribution of these synthetic isomers and endogenous auxins in Arabidopsis primary roots and hypocotyls was achieved in the same imaging analysis from both individually treated and cotreated samples. We also observed putative metabolites of synthetic auxin derivatives, i.e. auxinole amino acid conjugates and hydrolysed 4pTb-MeIAA product - 4pTb-IAA, based on their unique drifting ion intensity patterns. Furthermore, DESI-IM-MSI-revealed abundance of endogenous auxins and synthetic isomers was validated by liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that DESI-IM-MSI could be used as a robust technique for detecting endogenous and exogenous isomers and provide a spatiotemporal evaluation of hormonomics profiles in plants.


Asunto(s)
Arabidopsis , Espectrometría de Masa por Ionización de Electrospray/métodos , Ácidos Indolacéticos/análisis , Isomerismo , Estructura Molecular
14.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017176

RESUMEN

ObjectiveTo investigate the brain absorption components of Tianyuan Zhitong prescription and their distribution based on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), desorption electrospray ionization mass spectrometry imaging(DESI-MSI) and hyperspectral imaging techniques. MethodTen BALB/c mice were randomly divided into blank group(n=3) and administration group(n=7), the administration group was gavaged with 0.3 mL of Tianyuan Zhitong prescription liquid at a concentration of about 5 g·mL-1 of the raw material, and the blank group was gavaged with an equal volume of normal saline, and the whole brain of the mice were taken for the preparation of tissue homogenates and frozen sections, respectively. The tissue homogenates were qualitatively analyzed by UPLC-Q-TOF-MS for the brain absorption components in positive and negative ion modes, frozen sections were used for imaging to observe the distribution of these components in the brain. Cytoviva dark-field enhancement microscope was used to perform hyperspectral imaging scanning on the brain sections of mice from each group, and the scattered light data of at least 1 000 pixels in the visible-near-infrared(400-1 000 nm) band in the microscopic field of view were collected and average spectrum were created, which were used to compare the components in the brain tissues of mice from the blank and administration groups. ResultA total of 27 brain absorption components of Tianyuan Zhitong prescription were identified by UPLC-Q-TOF-MS, including 10 organic acids, 5 glycosides, 4 alkaloids, 1 phenol, 4 flavonoids, 2 phthalides and 1 other compound, which were mainly derived from Gastrodiae Rhizoma, Chuanxiong Rhizoma, vinegar-processed Corydalis Rhizoma, Ziziphi Spinosae Semen and processed Morindae Officinalis Radix. A total of 14 components were identified by mass spectrometry imaging, of which ferulic acid, tetrahydropalmatine and N-methyl dehydroberberine were mainly distributed in the cerebral cortex, vitamin B5, vemonoic acid and ricinoleic acid were mainly distributed in the hypothalamus, elemicin, octadecenic acid and octadecanoic acid were mainly distributed in the cortex and hypothalamus, while senkyunolide B, ligustilide, linoleic acid, 9,12-octadecadienoyl ethyl ester and spinosin were distributed in most regions of the brain tissues. Hyperspectral imaging showed that in the visible-near-infrared band range, the average spectrum of the brain tissues of mice in the administration group was significantly red-shifted, indicating that there were differences in the physical properties or contents of the chemical components in the brain between mice in the blank group and those in the administration group, and further verified the results of mass spectrometry imaging. ConclusionThrough the combination of UPLC-Q-TOF-MS and imaging techniques, the pharmacodynamic components of Tianyuan Zhitong prescription in the treatment of headache and the regional characteristics in brain tissue are clarified, which can provide reference for the selection of the index components of the research on the quality standard of this prescription and the research on the mechanism of the pharmacological effect.

15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030659

RESUMEN

Objective To explore the distribution characteristics of endogenous metabolites in Crocus sativus L. corms from different origins. Methods A method based on desorption electrospray ionization mass spectrometry imaging and optimized sample pretreatment was developed for directly visualize metabolites in C. sativus corms. Results In situ characterization of metabolites such as flavonoids, organic acids, amino acids, carotenoids, and cyclic enol ether terpene glycosides was achieved. L-Citruline, phenylacetylglycine, sativol, and geniposide were specifically distributed in the corms. Apigenin 7-(6''-O-acetyl)-glucoside, isorhamnetin-3-O-β-D-Glucoside, dhurrin 6'-glucoside, and Apigenin 7-O-diglucuronide were mainly distributed in the terminal bud. For compounds distributed in the corms, the highest abundance was found in corms from Shanghai, followed by Zhejiang and the lowest from Anhui. Conclusion The distribution of metabolites in different parts of C. sativus corms from different origins and the same origin varies significantly. Flavonoids and flavonoid derivatives such as isorhamnetin-3-O-β-D-Glucoside and apigenin derivatives are mainly distributed in the terminal buds, in addition, the natural plant protection agent dhurrin 6'-glucoside is also mainly distributed in the terminal corms, whereas amino acids, which are used as energy and material supplies, are mainly accumulated in the corms.

16.
Expert Opin Drug Discov ; 19(3): 291-301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38111363

RESUMEN

INTRODUCTION: Ultra-high-throughput mass spectrometry, uHT-MS, is a technology that utilizes ionization and sample delivery technologies optimized to enable sampling from well plates at > 1 sample per second. These technologies do not need a chromatographic separation step and can be utilized in a wide variety of assays to detect a broad range of analytes including small molecules, lipids, and proteins. AREAS COVERED: This manuscript provides a brief historical review of high-throughput mass spectrometry and the recently developed technologies that have enabled uHT-MS. The report also provides examples and references on how uHT-MS has been used in biochemical and chemical assays, nuisance compound profiling, protein analysis and high throughput experimentation for chemical synthesis. EXPERT OPINION: The fast analysis time provided by uHT-MS is transforming how biochemical and chemical assays are performed in drug discovery. The potential to associate phenotypic responses produced by 1000's of compound treatments with changes in endogenous metabolite and lipid signals is becoming feasible. With the augmentation of simple, fast, high-throughput sample preparation, the scope of uHT-MS usage will increase. However, it likely will not supplant LC-MS for analyses that require low detection limits from complex matrices or characterization of complex biotherapeutics such as antibody-drug conjugates.


Asunto(s)
Descubrimiento de Drogas , Cromatografía Líquida con Espectrometría de Masas , Humanos , Espectrometría de Masas/métodos , Descubrimiento de Drogas/métodos
17.
Trends Analyt Chem ; 1692023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045023

RESUMEN

Imaging mass spectrometry (IMS) allows for the untargeted mapping of biomolecules directly from tissue sections. This technology is increasingly integrated into biomedical and clinical research environments to supplement traditional microscopy and provide molecular context for tissue imaging. IMS has widespread clinical applicability in the fields of oncology, dermatology, microbiology, and others. This review summarizes the two most widely employed IMS technologies, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), and covers technological advancements, including efforts to increase spatial resolution, specificity, and throughput. We also highlight recent biomedical applications of IMS, primarily focusing on disease diagnosis, classification, and subtyping.

18.
Atherosclerosis ; 385: 117340, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37913561

RESUMEN

BACKGROUND AND AIMS: Lipids play an important role in atherosclerotic plaque development and are interesting candidate predictive biomarkers. However, the link between circulating lipids, accumulating lipids in the vessel wall, and plaque destabilization processes in humans remains largely unknown. This study aims to provide new insights into the role of lipids in atherosclerosis using lipidomics and mass spectrometry imaging to investigate lipid signatures in advanced human carotid plaque and plasma samples. METHODS: We used lipidomics and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to investigate lipid signatures of advanced human carotid plaque and plasma obtained from patients who underwent carotid endarterectomy (n = 14 out of 17 whose plaque samples were analyzed by DESI-MSI). Multivariate data analysis and unsupervised clustering were applied to identify lipids that were the most discriminative species between different patterns in plaque and plasma. These patterns were interpreted by quantitative comparison with conventional histology. RESULTS: Lipidomics detected more than 300 lipid species in plasma and plaque, with markedly different relative abundances. DESI-MSI visualized the spatial distribution of 611 lipid-related m/z features in plaques, of which 330 m/z features could be assigned based on exact mass, comparison to the lipidomic data, and high mass resolution MSI. Matching spatial lipid patterns to histological areas of interest revealed several molecular species that were colocalized with pertinent disease processes in plaque including specific sphingomyelin and ceramide species with calcification, phospholipids and free fatty acids with inflammation, and triacylglycerols and phosphatidylinositols with fibrin-rich areas. CONCLUSIONS: By comparing lipid species in plaque and plasma, we identified those circulating species that were also prominently present in plaque. Quantitative comparison of lipid spectral patterns with histology revealed the presence of specific lipid species in destabilized plaque areas, corroborating previous in vitro and animal studies.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Espectrometría de Masas , Placa Aterosclerótica/química , Arterias Carótidas , Fosfolípidos , Espectrometría de Masa por Ionización de Electrospray/métodos
19.
Crit Rev Anal Chem ; : 1-30, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847593

RESUMEN

Multimodal imaging (MMI) has emerged as a powerful tool in clinical research, combining different imaging modes to acquire comprehensive information and enabling scientists and surgeons to study tissue identification, localization, metabolic activity, and molecular discovery, thus aiding in disease progression analysis. While multimodal instruments are gaining popularity, challenges such as non-standardized characteristics, custom software, inadequate commercial support, and integration issues with other instruments need to be addressed. The field of multimodal imaging or multiplexed imaging allows for simultaneous signal reproduction from multiple imaging strategies. Intraoperatively, MMI can be integrated into frameless stereotactic surgery. Recent developments in medical imaging modalities such as magnetic resonance imaging (MRI), and Positron Emission Topography (PET) have brought new perspectives to multimodal imaging, enabling early cancer detection, molecular tracking, and real-time progression monitoring. Despite the evidence supporting the role of MMI in surgical decision-making, there is a need for comprehensive studies to validate and perform integration at the intersection of multiple imaging technologies. They were integrating mass spectrometry-based technologies (e.g., imaging mass spectrometry (IMS), imaging mass cytometry (IMC), and Ion mobility mass spectrometry ((IM-IM) with medical imaging modalities, offering promising avenues for molecular discovery and clinical applications. This review emphasizes the potential of multi-omics approaches in tissue mapping using MMI integrated into desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI), allowing for sequential analyses of the same section. By addressing existing knowledge gaps, this review encourages future research endeavors toward multi-omics approaches, providing a roadmap for future research and enhancing the value of MMI in molecular pathology for diagnosis.

20.
Isr J Chem ; 63(7-8)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37829547

RESUMEN

It is argued that each of the three key steps in drug discovery, (i) reaction screening to find successful routes to desired drug candidates, (ii) scale up of the synthesis to produce amounts adequate for testing, and (iii) bioactivity assessment of the candidate compounds, can all be performed using mass spectrometry (MS) in a sequential fashion. The particular ionization method of choice, desorption electrospray ionization (DESI), is both an analytical technique and a procedure for small-scale synthesis. It is also highly compatible with automation, providing for high throughput in both synthesis and analysis. Moreover, because accelerated reactions take place in the secondary DESI microdroplets generated from individual reaction mixtures, this allows either online analysis by MS or collection of the synthetic products by droplet deposition. DESI also has the unique advantage, amongst spray-based MS ionization methods, that complex buffered biological solutions can be analyzed directly, without concern for capillary blockage. Here, all these capabilities are illustrated, the unique chemistry at droplet interfaces is presented, and the possible future implementation of DESI-MS based drug discovery is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA