Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.745
Filtrar
1.
J Environ Sci (China) ; 148: 350-363, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095170

RESUMEN

Pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) are phytotoxins produced by various plant species and have been emerged as environmental pollutants. The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots. This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics. Sorption amounts for seneciphylline (Sp) and seneciphylline-N-oxide (SpNO) in three acidic soils ranged from 2.9 to 5.9 µg/g and 1.7 to 2.8 µg/g, respectively. Desorption percentages for Sp and SpNO were from 22.2% to 30.5% and 36.1% to 43.9%. In the mixed PAs/PANOs systems, stronger sorption of PAs over PANOs was occurred in tested soils. Additionally, the Freundlich models more precisely described the sorption/desorption isotherms. Cation exchange capacity, sand content and total nitrogen were identified as major influencing factors by linear regression models. Overall, the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity. PANOs were more likely to migrate within soils and be absorbed by tea plants. It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology.


Asunto(s)
Camellia sinensis , Alcaloides de Pirrolicidina , Contaminantes del Suelo , Suelo , Alcaloides de Pirrolicidina/química , Alcaloides de Pirrolicidina/análisis , Suelo/química , Camellia sinensis/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Óxidos/química , Adsorción
2.
Small Methods ; : e2400863, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248659

RESUMEN

For group 14 mono-elemental 2D materials, such as silicene, germanene, and stanene, oxidation is a severe problem that alters or degrades their physical properties. This study shows that the oxidized germanene on Ag(111)/Ge(111) can be reformed to germanene by simple heating ≈500 °C in a vacuum. The key reaction in reforming germanene is the desorption of GeO and GeO2 during heating ≈350 °C. After removing surface oxygen, Ge further segregates to the surface, resulting in the reformation of germanene. The reformed germanene has the same crystal structure, a (7√7 × 7√7) R19.1° supercell with respect to Ag(111), and has equivalent high quality to that of as-grown germanene on Ag(111)/Ge(111). Even after air oxidation, germanene can be reformed by annealing in a vacuum. On the other hand, the desorption of GeO and GeO2 at high temperatures is not suppressed in the O2 backfilling atmosphere. This instability of oxidized germanene/Ag(111)/Ge(111) at high temperatures contributes to the ease of germanene reformation without residual oxygen. In other words, the present germanene reformation, as well as the segregation of germanene on Ag(111)/Ge(111), is a highly robust process to synthesize germanene.

3.
Environ Technol ; : 1-14, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250824

RESUMEN

The adsorption/desorption characteristics of methane (CH4) on moist shale are of great significance for shale gas exploration and production. However, the influence of moisture on CH4 adsorption/desorption under high temperature and pressure conditions, which is consistent to shale reservoirs (burial depths about 3500-4500 m) in China, remained unclear. In this study, quantitative analysis toward moisture dependence of CH4 adsorption/desorption capability on shales was investigated through experimentation and molecular dynamics simulation under moisture contents of 0%, 0.204%, 0.445%, 0.677%, and 0.965%. Results show that with increasing moisture content, the isothermal adsorption capacity of CH4 decrease, and it reaches 36.80% and 10.00% at moisture content of 0.965% in experimentation and simulation, respectively. Simultaneously, the hysteresis index of CH4 desorption increase by 19.64% and 4.52%. The role of water molecules hindering CH4 desorption under low and high moisture content was clarified. At low moisture content, water molecules are mainly adsorbed on the pore walls, thereby reducing the size of the pore throat and hindering CH4 transport pathways. At high moisture content, many water molecules escape from the original adsorption sites and form clusters in the middle of the pores, blocking the pore throats. Meanwhile, CH4 is re-adsorbed onto the exposed adsorption sites of water, which leads to CH4 desorption hysteresis. The results provide valuable insights for shale gas exploration and production under practical water-bearing shale reservoir conditions.

4.
J Colloid Interface Sci ; 678(Pt B): 609-618, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39265333

RESUMEN

HYPOTHESIS: Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones. Once exposed, these minerals provide the surfaces for fluid-solid interactions that control the fate of dissolved or suspended compounds such as organic matter and colloids. However, the functional and compositional diversity of organic matter and colloids limits the assessment of reactivity and availability of clay mineral interfaces. Such assessment demands a mobile compound with strong affinity to clay surfaces that is alien to the subsurface. EXPERIMENT: We approached this challenge by using poly(ethylene glycol) (PEG) as interfacial tracer in limestone weathering experiments. FINDINGS: PEG adsorption and transport was dependent on the availability of clay mineral surfaces and carbonate dissolution dynamics. In addition, PEG adsorption featured adsorption-desorption hysteresis which retained PEG mass on clay mineral surfaces. This resulted in different PEG transport for experiments conducted consecutively in the same porous medium. As such, PEG transport was reconstructed with a continuum-scale model parametrized by a Langmuir-type isotherm including hysteresis. Thus, we quantified the influence of exposed clay mineral surfaces on the transport of organic colloids in carbonate media. This renders PEG a suitable model colloid tracer for the assessment of clay surface exposition in porous media.

5.
Environ Technol ; : 1-14, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300764

RESUMEN

Renewable and biodegradable polysaccharides attract attention as environmentally friendly adsorbents for the removal of heavy metals from wastewater. One such group, is carrageenan, of which were recently successfully employed to adsorb representative lanthanide and actinide ions. Herein, iota-carrageenan-based hydrogels were used to adsorb europium ions (Eu3+) from water solutions, followed by desorption of the ions from the hydrogel beads and recycling of the beads three times. It was found that sorption yields from a 500 mg/L Eu3+ ion solution with beads that were prepared with 1 or 2 wt/v% aqueous solution of iota-carrageenan with CaCl2 (0.5 M) reached maximum sorption yield of 50% and 65%, correspondingly, after 1 h. In addition, the sorption kinetics followed the pseudo second-order model controlled by chemisorption. Desorption yields in the first cycle using NaNO3 (1 M) with both preparations were 57% and 74%, respectively. The sorption yields increased during the second and third cycles and were efficient in the overall pH range. Cryo-SEM, SEM, SEM-EDS and TGA analyses verified the adsorption and desorption of Eu3+ ions to and from the iota beads and that the Ca2+ ions that initially crosslinked the hydrogel were replaced during the cycles by Eu3+ or Na+ ions. In addition, the beads were stable and easily reusable for several sorption/desorption cycles. Furthermore, after sorption, the beads were characterised by a porous structure, such that beads prepared with a 2 wt/v% aqueous solution of iota-carrageenan yielded a more porous, ordered structure, and after desorption, the bead textures became even more porous.

6.
Heliyon ; 10(16): e36496, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247357

RESUMEN

Raw mango peel (RMP) was first saponified to yield saponified mango peel (SMP), which was then loaded with Zr(IV) ions to form a biosorbent for As(III) scavenging.The biosorption behaviors and mechanisms of As(III) scavenging using RMP and Zr(IV)-loaded saponified mango peel (Zr(IV)-SMP) were investigated batchwise. The As(III) scavenging efficiency of RMP increased from 20.13 % to 87.32 % after Zr(IV) loading. Optimum contact time of 6 h has been investigated for As(III) scavenging by Zr(IV)-SMP, and the data on kinetics is well fitted to the pseudo-second-order (PSO) model. Similarly, isotherm data of Zr(IV)-SMP fitted well to the Langmuir isotherm model with the maximum As(III) scavenging potential of 45.52 mg/g. Chloride (Cl-) and nitrate (NO3 -) have negligible influence on As(III) scavenging, but sulphate (SO4 2-) interferes significantly. The exhausted Zr(IV)-SMP could be easily regenerated by treating with 2MNaOH. A mechanistic study indicates that As(III) scavenging is primarily contributed to electrostatic interaction and ligand exchange, which is confirmed from both instrumental and chemical characterizations techniques. Tubewell underground water polluted with a trace amount of arsenic (98.63 µg/L) could be successfully lowered down to the WHO standard (10 µg/L) by applying a small amount of Zr(IV)-SMP. Therefore, the Zr(IV)-SMP investigated in this work can be a low-cost, environmentally benign, and promising alternative for scavenging trace levels of arsenic from contaminated water.

7.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273579

RESUMEN

Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata's lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples.


Asunto(s)
Biomarcadores , Productos Finales de Glicación Avanzada , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Productos Finales de Glicación Avanzada/orina , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Biomarcadores/orina , Espectrometría de Masa por Ionización de Electrospray/métodos
8.
J Breath Res ; 18(4)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39260379

RESUMEN

Untargeted analysis of volatile organic compounds (VOCs) from exhaled breath and culture headspace are influenced by several confounding factors not represented in reference standards. In this study, we propose a method of generating pooled quality control (QC) samples for untargeted VOC studies using a split-recollection workflow with thermal desorption tubes. Sample tubes were desorbed and split from each sample and recollected onto a single tube, generating a pooled QC sample. This QC sample was then repeatedly desorbed and recollected with a sequentially lower split ratio allowing injection of multiple QC samples. We found pooled QC samples to be representative of complex mixtures using principal component analysis and may be useful in future longitudinal, multi-centre, and validation studies to assess data quality and adjust for batch effects.


Asunto(s)
Pruebas Respiratorias , Control de Calidad , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Humanos , Pruebas Respiratorias/métodos , Pruebas Respiratorias/instrumentación , Espiración , Cromatografía de Gases y Espectrometría de Masas
9.
Ecotoxicol Environ Saf ; 285: 117026, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270478

RESUMEN

Utilizing infrared spectroscopy coupled with batch equilibrium methods, the adsorption and desorption characteristics of the novel Insecticide fluchlordiniliprole were assessed in four different soil types. It was found that fluchlordiniliprole's adsorption and desorption in these soils were consistent with the Freundlich isotherm, exhibiting adsorption capacities (KF-ads) ranging from 8.436 to 36.269. Temperature fluctuations, encompassing both high and low extremes, impaired the ability of soil to adsorb fluchlordiniliprole. In addition, adsorption dynamics were modulated by several other factors, including soil pH, ionic strength, amendments (e.g., biochar and humic substances), and the presence of various surfactants and microplastics. Although capable of leaching, fluchlordiniliprole exhibited weak mobility in most soils. Therefore, it appears that fluchlordiniliprole seems to pose a threat to surface soil and aquatic biota, but a minimal threat to groundwater. SYNOPSIS STATEMENT: This research examines the dynamics of fluchlordiniliprole in soil, an will aid in maintaining ecological safety and managing agricultural pesticides. The study's comprehensive analysis of adsorption, desorption, and soil migration patterns significantly contributes to our understanding of pesticide interactions with diverse soil types. The results of this study will enable the development of environmentally responsible agricultural practices.

10.
J Environ Manage ; 369: 122381, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241588

RESUMEN

Anammox has received increased attention due to its enhanced and cost-efficient approach to nitrogen removal. However, its practical application is complicated by strict influent NO2--N to NH4+-N ratio demands and an 11% nitrate production from the anammox process. This study was the first known research to propose and verify a system of zeolite integrated with partial denitrification and anammox (Z-PDA) in an up-flow anaerobic sludge bed (UASB) reactor. The enhanced and robust nitrogen removal resulted in an ultra-high nitrogen removal efficiency (NRE, 93.0 ± 2.0%). Zeolite adsorption and biological desorption of ammonium contributed to robust nitrogen removal with fluctuating influent NO2--N to NH4+-N ratios. Applying 16S rRNA gene sequencing found that Candidatus Brocadia and Thauera were the key bacteria responsible for anammox and partial denitrification (PD), respectively. Zeolite also acted as a biological carrier. This significantly enriched anammox bacteria with a higher relative abundance of Candidatus Brocadia, reaching 49.2%. Metagenomic analysis demonstrated that the multiple functional genes related to nitrogen removal (nrfA/H, narG/H/I) and the metabolic pathways (Biosynthesis of cofactors, the Two-component system, the Biosynthesis of nucleotide sugars, and Purine metabolism) ensured the resilience of the Z-PDA system despite influent fluctuations. Overall, this study provided novel insights into the impacts of zeolite in the PDA system. It described the fundamental mechanism of zeolite based on adsorption and biological desorption, and demonstrated a meaningful application of the anammox process in sewage treatment.


Asunto(s)
Desnitrificación , Nitrógeno , Zeolitas , Nitrógeno/metabolismo , Reactores Biológicos , Aguas del Alcantarillado , ARN Ribosómico 16S/genética , Compuestos de Amonio/metabolismo , Anaerobiosis , Eliminación de Residuos Líquidos/métodos
11.
Sci Total Environ ; 952: 175998, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39233067

RESUMEN

Knowledge of antibiotic desorption from high-temperature biochar is essential for assessing their environmental risks, and for the successful application of biochar to remove antibiotics. In previous studies, irreversible pore deformation, formation of charge-assisted hydrogen bonds or amide bonds were individually proposed to explain the desorption hysteresis of antibiotics on biochars, leading to a debate on hysteresis mechanism. In this study, desorption of sulfamethoxazole (SMX), ciprofloxacin (CFX) and tetracycline (TET) on a wood chip biochar produced at 700 °C (WBC700) and its oxidized product (O-WBC700) was investigated to explore the underlying hysteresis mechanism. Significant desorption hysteresis was observed for SMX, CFX and TET on WBC700 and O-WBC700. Hysteresis index (HI) of each antibiotic was higher on O-WBC700 with more oxygen-containing groups than WBC700, and was higher at lower equilibrium concentration. HI of antibiotics on WBC700 (or O-WBC700) increased in the order of SMX < CFX < TET. The calculated adsorption enthalpy of each antibiotic on WBC700 was positive, indicating an endothermic process. These phenomena together with FTIR, XPS spectra confirmed that the desorption hysteresis mechanism of antibiotics on high-temperature biochar is the formation of amide bonds by amidation reaction, but not the pore deformation or the hydrogen bond. Moreover, antibiotic can form amide bonds with WBC700 only if the amine group with pKa > 4.0, and the HI values were positively correlated with their pKa values. Amine group of antibiotics with higher pKa value show more nucleophilicity and could form stronger amide bonds with carboxyl group of biochar. The obtained results could help to solve the debate on desorption hysteresis mechanism of antibiotics on high-temperature biochars, and provide a new insight into the role of amine groups and amidation reaction on the hysteresis.


Asunto(s)
Antibacterianos , Carbón Orgánico , Carbón Orgánico/química , Antibacterianos/química , Adsorción , Calor , Aminas/química , Ciprofloxacina/química , Sulfametoxazol/química , Modelos Químicos , Tetraciclina/química
12.
Int J Pharm ; 665: 124693, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277151

RESUMEN

Lyophilization (aka freeze drying) has been shown to provide long-term stability for many crucial biotherapeutics, e.g., mRNA vaccines for COVID-19, allowing for higher storage temperature. The final stage of lyophilization, namely secondary drying, entails bound water removal via desorption, in which accurate prediction of bound water concentration is vital to ensuring the quality of the lyophilized product. This article proposes a novel technique for real-time estimation of the bound water concentration during secondary drying in lyophilization. A state observer is employed, which combines temperature measurement and mechanistic understanding of heat transfer and desorption kinetics, without requiring any online concentration measurement. Results from both simulations and experimental data show that the observer can accurately estimate the concentration of bound water in real time for all possible concentration levels, operating conditions, and measurement noise. This framework can also be applied for monitoring and control of the residual moisture in other desorption-related processes.

13.
Chemosphere ; 365: 143349, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278331

RESUMEN

Thermal desorption is a well-assessed technique to speciate mercury (Hg) in soils and sediments. However, the effects related to the different matrices are still not properly assessed. In this study, thermal desorption was applied to Hg-free calcite mixed with Hg standard and soils rich in carbonate and silicate minerals, as well as organic matter. Hg0, HgCl2, HgO, α-HgS, ß-HgS and organo-mercuric compounds were recognized, pointing out that the soil matrix operates notable differences in terms of breakdown temperatures of the Hg-compounds and suggesting that the mineralogical composition of soil has to be investigated before applying the thermal desorption technique. Furthermore, the presence of Hg0 was carefully evaluated since, as already observed, it forms Hg2+, which increases mercury mobility in the pedological cover with important consequences for those soils contaminated and located close to decommissioned or active mining areas and/or industrial sites (e.g. chloro-alkali industries). Experimental runs were thus carried out by using carbonate-, silicate- and organic-rich soils doped with liquid Hg. It was observed that Hg0 tends to be oxidized to form Hg+ and then Hg2+ as a function of soil matrix and reaction time. Surprisingly, the oxidation rate is rather fast, since after 42 days the initial content of Hg0 is halved, thus following an exponential decay. This implies that in Hg0-polluted areas, the fate of the resulting Hg2+ can be that to: i) be adsorbed by organic matter and/or Fe-Mn-Al oxides and/or ii) feed shallow aquifers. This study is a further step ahead to understand the behavior of Hg in contaminated soils from industrial and mining areas where liquid Hg is occurring in different soil matrices and may provide useful indications for remediation operations.

14.
Anal Bioanal Chem ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126505

RESUMEN

Understanding the relationship between the concentration of a drug and its therapeutic efficacy or side effects is crucial in drug development, especially to understand therapeutic efficacy in central nervous system drug, quantifying drug-induced site-specific changes in the levels of endogenous metabolites, such as neurotransmitters. In recent times, evaluation of quantitative distribution of drugs and endogenous metabolites using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) has attracted much attention in drug discovery research. However, MALDI-MSI quantification (quantitative mass spectrometry imaging, QMSI) is an emerging technique, and needs to be further developed for practicable and convenient use in drug discovery research. In this study, we developed a reliable QMSI method for quantification of clozapine (antipsychotic drug) and dopamine and its metabolites in the rat brain using MALDI-MSI. An improved mimetic tissue model using powdered frozen tissue for QMSI was established as an alternative method, enabling the accurate quantification of clozapine levels in the rat brain. Furthermore, we used the improved method to evaluate drug-induced fluctuations in the concentrations of dopamine and its metabolites. This method can quantitatively evaluate drug localization in the brain and drug-induced changes in the concentration of endogenous metabolites, demonstrating the usefulness of QMSI.

15.
Small ; : e2402492, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109574

RESUMEN

Enhancing active states on the catalyst surface by modulating the adsorption-desorption properties of reactant species is crucial to optimizing the electrocatalytic activity of transition metal-based nanostructured materials. In this work, an efficient optimization strategy is proposed by co-modulating the dual anions (C and S) in Ni3C/Ni3S2, the heterostructured electrocatalyst, which is prepared via a simple hot-injection method. The presence of Ni3C/Ni3S2 heterojunctions accelerates the charge carrier transfer and promotes the generation of active sites, enabling the heterostructured electrocatalyst to achieve current densities of 10/100 mA cm-2 at 1.37 V/1.53 V. The Faradaic efficiencies for formate production coupled with hydrogen evolution approach 100%, accompanied with a stability record of 350 h. Additionally, operando electrochemical impedance spectroscopy (EIS), in situ Raman spectroscopy, and density functional theory (DFT) calculations further demonstrate that the creation of Ni3C/Ni3S2 heterointerfaces originating from dual anions' (C and S) differentiation is effective in adjusting the d-band center of active Ni atoms, promoting the generation of active sites, as well as optimizing the adsorption and desorption of reaction intermediates. This dual anions co-modulation strategy to stable heterostructure provides a general route for constructing high-performance transition metal-based electrocatalysts.

16.
Sci Rep ; 14(1): 18813, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138202

RESUMEN

Gas saturation is a critical parameter for the selection and development of coalbed methane, as well as a key indicator reflecting the challenges in coalbed methane development and productivity evaluation of coalbed methane wells. As one of the significant factors influencing gas saturation, gas content plays a vital role in comprehensively investigating coal pore properties to fully comprehend the process and conditions of methane adsorption and desorption. In this study, 3# and 15# coals from Qinshui Basin, China was selected as research subjects. The experimental evaluation encompassed an examination of composition, pore characteristics, permeability characteristics of coal, rock mechanical parameters while discussing the impact of temperature and pressure on coal's adsorption and desorption capacity. The mineral characteristics analysis revealed that vitrinite is the main component with varying percentages and reflectance values in both 3# and 15# coal seams. The gas content and methane concentration in the 15# coal seam are higher than those in the 3# coal seam. The relationship between gas content within a coal seam and burial depth depends on achieving a balance between positive pressure effects caused by overburden stress exertion on gases trapped within pores under high pressures during burial history versus negative temperature effects due to cooling during geological processes over time. Predictions were made regarding deep-coal gas content which holds significant implications for accurately understanding variations in desorption behavior along with optimizing fracturing engineering.

17.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125077

RESUMEN

Microwave-assisted de-emulsification is attractive in the processes of petroleum production and refining. The main advantage of microwaves is their direct influence on the surfactant layer at the oil/water interface. Previously, an effective interfacial modification was demonstrated by pulsed microwave irradiation. However, the effect of the modification diminished during the off interval of the pulse irradiation. In this study, two-stage microwave irradiation with different powers and durations was applied as a method to maintain an interfacial effect. The power of the second stage was changed to optimise the modification. Quick modification was obtained by high-power irradiation followed by low-power irradiation. It was confirmed a sustained modification was maintained by a moderate power of the second irradiation. This observation indicates a re-adsorption or re-structure process after the first irradiation is suppressed by the second irradiation. The results open new opportunities to optimise microwave operation in oil/water systems.

18.
Polymers (Basel) ; 16(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125184

RESUMEN

Time-dependent emitted H2 content modeling via a reliable diffusion analysis program was performed for H2-enriched polymers under high pressure. Here, the emitted hydrogen concentration versus elapsed time was obtained at different diffusivities and volume dimensions for cylinder-, sphere- and sheet-shaped specimens. The desorption equilibrium time, defined as the time when the H2 emission content is nearly saturated, was an essential factor for determining the periodic cyclic testing and high-pressure H2 exposure effect. The equilibrium time in the desorption process was modeled. The equilibrium time revealed an exponential growth behavior with respect to the squared thickness and the squared diameter of the cylinder--shaped specimen, while it was proportional to the squared diameter for the sphere-shaped specimen and to the squared thickness for the sheet-shaped specimen. Linear relationships between the reciprocal equilibrium time and diffusivity were found for all shaped polymers. The modeling results were confirmed by analysis of the solutions using Fick's second diffusion law and were consistent with the experimental investigations. Numerical modeling provides a useful tool for predicting the time-dependent emitted H2 behavior and desorption equilibrium time. With a known diffusivity, a complicated time-dependent emitted H2 behavior with a multi-exponential form of an infinite series could also be predicted for the three shaped samples using a diffusion analysis program.

19.
ACS Nano ; 18(32): 21336-21346, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39090798

RESUMEN

Thyroid nodules (TNs) have emerged as the most prevalent endocrine disorder in China. Fine-needle aspiration (FNA) remains the standard diagnostic method for assessing TN malignancy, although a majority of FNA results indicate benign conditions. Balancing diagnostic accuracy while mitigating overdiagnosis in patients with benign nodules poses a significant clinical challenge. Precise, noninvasive, and high-throughput screening methods for high-risk TN diagnosis are highly desired but remain less explored. Developing such approaches can improve the accuracy of noninvasive methods like ultrasound imaging and reduce overdiagnosis of benign nodule patients caused by invasive procedures. Herein, we investigate the application of gold-doped zirconium-based metal-organic framework (ZrMOF/Au) nanostructures for metabolic profiling of thyroid diseases. This approach enables the efficient extraction of urine metabolite fingerprints with high throughput, low background noise, and reproducibility. Utilizing partial least-squares discriminant analysis and four machine learning models, including neural network (NN), random forest (RF), logistic regression (LR), and support vector machine (SVM), we achieved an enhanced diagnostic accuracy (98.6%) for discriminating thyroid cancer (TC) from low-risk TNs by using a diagnostic panel. Through the analysis of metabolic differences, potential pathway changes between benign nodule and malignancy are identified. This work explores the potential of rapid thyroid disease screening using the ZrMOF/Au-assisted LDI-MS platform, providing a potential method for noninvasive screening of thyroid malignant tumors. Integrating this approach with imaging technologies such as ultrasound can enhance the reliability of noninvasive diagnostic methods for malignant tumor screening, helping to prevent unnecessary invasive procedures and reducing the risk of overdiagnosis and overtreatment in patients with benign nodules.


Asunto(s)
Nódulo Tiroideo , Circonio , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/diagnóstico , Nódulo Tiroideo/patología , Humanos , Circonio/química , Oro/química , Metabolómica , Femenino
20.
J Sep Sci ; 47(16): e2400383, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148359

RESUMEN

Unsymmetrical dimethylhydrazine (UDMH) based rocket fuel, when released into the soil, undergoes oxidative transformations to form a variety of toxic nitrogen-containing products (TPs). Loamy soils containing aluminosilicates (clay) are capable of strong binding and retention of UDMH TPs due to a combination of polar sorption and cation-exchange properties, posing challenges for their extraction and quantification. To overcome this problem, the present study proposes direct thermal desorption (TD) of analytes from loam facilitated by the addition of modifiers competing with UDMH TPs for sorption centers and ensuring their conversion into molecular form. Among tested additives, the mixture of potassium chloride and hydroxide demonstrated the best performance and provided recoveries of the most UDMH TPs exceeding 70% under optimized TD conditions (200°C, 30 min). The online combination of TD with gas chromatography-tandem mass spectrometry allowed for the development of a method for the determination of 15 UDMH TPs in loamy soils with limits of detection in the range of 0.2-15 µg/kg. The use of matrix-matched calibration and deuterated internal standards ensured high accuracy (80%-100%) and precision (relative standard deviation < 18%) of the analysis. The developed method was validated and successfully tested in the analyses of real loamy soil samples polluted with rocket fuel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA