Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 198: 106558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852754

RESUMEN

Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.


Asunto(s)
Corteza Cerebral , Filaminas , Proteína de Unión al GTP rac1 , Animales , Ratones , Factores Despolimerizantes de la Actina/metabolismo , Corteza Cerebral/metabolismo , Filaminas/metabolismo , Filaminas/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Células Piramidales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética
2.
Methods Mol Biol ; 2761: 57-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427229

RESUMEN

The objective of this chapter is to provide an overview of the methods used to investigate the connectivity and structure of the nervous system. These methods allow neuronal cells to be categorized according to their location, shape, and connections to other cells. The Golgi-Cox staining gives a thorough picture of all significant neuronal structures found in the brain that may be distinguished from one another. The most significant characteristic is its three-dimensional integrity since all neuronal structures may be followed continuously from one part to the next. Successions of sections of the brain's neurons are seen with the Golgi stain. The Golgi method is used to serially segment chosen brain parts, and the resulting neurons are produced from those sections.


Asunto(s)
Dendritas , Espinas Dendríticas , Espinas Dendríticas/fisiología , Dendritas/fisiología , Neuronas/fisiología , Lóbulo Temporal , Tinción con Nitrato de Plata , Hipocampo
3.
Development ; 150(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823352

RESUMEN

Dendritic outgrowth in immature neurons is enhanced by neuronal activity and is considered one of the mechanisms of neural circuit optimization. It is known that calcium signals affect transcriptional regulation and cytoskeletal remodeling necessary for dendritic outgrowth. Here, we demonstrate that activity-dependent calcium signaling also controls mitochondrial homeostasis via AMP-activated protein kinase (AMPK) in growing dendrites of differentiating mouse hippocampal neurons. We found that the inhibition of neuronal activity induced dendritic hypotrophy with abnormally elongated mitochondria. In growing dendrites, AMPK is activated by neuronal activity and dynamically oscillates in synchrony with calcium spikes, and this AMPK oscillation was inhibited by CaMKK2 knockdown. AMPK activation led to phosphorylation of MFF and ULK1, which initiate mitochondrial fission and mitophagy, respectively. Dendritic mitochondria in AMPK-depleted neurons exhibited impaired fission and mitophagy and displayed multiple signs of dysfunction. Genetic inhibition of fission led to dendritic hypoplasia that was reminiscent of AMPK-deficient neurons. Thus, AMPK activity is finely tuned by the calcium-CaMKK2 pathway and regulates mitochondrial homeostasis by facilitating removal of damaged components of mitochondria in growing neurons during normal brain development.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Calcio , Ratones , Animales , Fosforilación , Proteínas Quinasas Activadas por AMP/genética , Calcio/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Dendritas/metabolismo , Homeostasis
4.
J Chem Neuroanat ; 133: 102329, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659616

RESUMEN

Status Epilepticus (SE) is a distributed network disorder, which involves the hippocampus and extra-hippocampal structures. Epileptogenesis in SE is tightly associated with neurogenesis, plastic changes and neural network reorganization facilitating hyper-excitability. On the other hand, dendritic spines are known to be the excitatory synapse in the brain. Therefore, dendritic spine dynamics could play an intricate role in these network alterations. However, the exact reason behind these structural changes in SE are elusive. In the present study, we have investigated the aforementioned hypothesis in the lithium-pilocarpine treated rat model of SE. We have examined cytoarchitectural and morphological changes using hematoxylin-eosin and Golgi-Cox staining in three different brain regions viz. CA1 pyramidal layer of the dorsal hippocampus, layer V pyramidal neurons of anterior temporal lobe (ATL), and frontal neocortex of the same animals. We observed macrostructural and layer-wise alteration of the pyramidal layer mainly in the hippocampus and ATL of SE rats, which is associated with sclerosis in the hippocampus. Sholl analysis exhibited partial dendritic plasticity in apical and basal dendrites of pyramidal cells as compared to the saline-treated weight-/age-matched control group. These findings indicate that region-specific alterations in dendritogenesis may contribute to the development of independent epileptogenic networks in the hippocampus, ATL, and frontal neocortex of SE rats.


Asunto(s)
Neocórtex , Estado Epiléptico , Ratas , Animales , Pilocarpina/toxicidad , Litio/toxicidad , Modelos Animales de Enfermedad , Hipocampo , Estado Epiléptico/inducido químicamente , Lóbulo Temporal
5.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629145

RESUMEN

The apical dendrite of a cortical projection neuron (CPN) is generated from the leading process of the migrating neuron as the neuron completes migration. This transformation occurs in the cortical marginal zone (MZ), a layer that contains the Cajal-Retzius neurons and their axonal projections. Cajal-Retzius neurons (CRNs) are well known for their critical role in secreting Reelin, a glycoprotein that controls dendritogenesis and cell positioning in many regions of the developing brain. In this study, we examine the possibility that CRNs in the MZ may provide additional signals to arriving CPNs, that may promote the maturation of CPNs and thus shape the development of the cortex. We use whole embryonic hemisphere explants and multiphoton microscopy to confirm that CRNs display intracellular calcium transients of <1-min duration and high amplitude during early corticogenesis. In contrast, developing CPNs do not show high-amplitude calcium transients, but instead show a steady increase in intracellular calcium that begins at the time of dendritic initiation, when the leading process of the migrating CPN is encountering the MZ. The possible existence of CRN to CPN communication was revealed by the application of veratridine, a sodium channel activator, which has been shown to preferentially stimulate more mature cells in the MZ at an early developmental time. Surprisingly, veratridine application also triggers large calcium transients in CPNs, which can be partially blocked by a cocktail of antagonists that block glutamate and glycine receptor activation. These findings outline a model in which CRN spontaneous activity triggers the release of glutamate and glycine, neurotransmitters that can trigger intracellular calcium elevations in CPNs. These elevations begin as CPNs initiate dendritogenesis and continue as waves in the post-migratory cells. Moreover, we show that the pharmacological blockade of glutamatergic signaling disrupts migration, while forced expression of a bacterial voltage-gated calcium channel (CavMr) in the migrating neurons promotes dendritic growth and migration arrest. The identification of CRN to CPN signaling during early development provides insight into the observation that many autism-linked genes encode synaptic proteins that, paradoxically, are expressed in the developing cortex well before the appearance of synapses and the establishment of functional circuits.


Asunto(s)
Señalización del Calcio , Calcio , Veratridina , Neuronas , Dendritas , Calcio de la Dieta , Ácido Glutámico
6.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37620147

RESUMEN

Several neurodevelopmental disorders are associated with increased mTOR activity that results in pathogenic neuronal dysmorphogenesis (i.e., soma and dendrite overgrowth), leading to circuit alterations associated with epilepsy and neurologic disabilities. Although an mTOR analog is approved for the treatment of epilepsy in one of these disorders, it has limited efficacy and is associated with a wide range of side effects. There is a need to develop novel agents for the treatment of mTOR-pathway related disorders. Here, we developed a medium-throughput phenotypic assay to test drug efficacy on neurite morphogenesis of mouse neurons in a hyperactive mTOR condition. Our assay involved in utero electroporation (IUE) of a selective population of cortical pyramidal neurons with a plasmid encoding the constitutively active mTOR activator, Rheb, and tdTomato. Labeled neurons from the somatosensory cortex (SSC) were cultured onto 96-well plates and fixed at various days in vitro or following Torin 1 treatment. Automated systems were used for image acquisition and neuron morphologic measurements. We validated our automated approach using traditional manual methods of neuron morphologic assessment. Both automated and manual analyses showed increased neurite length and complexity over time, and decreased neurite overgrowth and soma size with Torin 1. These data validate the accuracy of our automated approach that takes hours compared with weeks when using traditional manual methods. Taken together, this assay can be scaled to screen 32 compounds simultaneously in two weeks, highlighting its robustness and efficiency for medium-throughput screening of candidate therapeutics on a defined population of wild-type or diseased neurons.


Asunto(s)
Neuritas , Neuronas , Animales , Ratones , Células Piramidales , Electroporación , Serina-Treonina Quinasas TOR
7.
Acta Pharmacol Sin ; 44(8): 1576-1588, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37012493

RESUMEN

Emerging evidence demonstrates the vital role of synaptic transmission and structural remodeling in major depressive disorder. Activation of melanocortin receptors facilitates stress-induced emotional behavior. Prolylcarboxypeptidase (PRCP) is a serine protease, which splits the C-terminal amino acid of α-MSH and inactivates it. In this study, we asked whether PRCP, the endogenous enzyme of melanocortin system, might play a role in stress susceptibility via regulating synaptic adaptations. Mice were subjected to chronic social defeat stress (CSDS) or subthreshold social defeat stress (SSDS). Depressive-like behavior was assessed in SIT, SPT, TST and FST. Based on to behavioral assessments, mice were divided into the susceptible (SUS) and resilient (RES) groups. After social defeat stress, drug infusion or viral expression and behavioral tests, morphological and electrophysiological analysis were conducted in PFX-fixed and fresh brain slices containing the nucleus accumbens shell (NAcsh). We showed that PRCP was downregulated in NAcsh of susceptible mice. Administration of fluoxetine (20 mg·kg-1·d-1, i.p., for 2 weeks) ameliorated the depressive-like behavior, and restored the expression levels of PRCP in NAcsh of susceptible mice. Pharmacological or genetic inhibition of PRCP in NAcsh by microinjection of N-benzyloxycarbonyl-L-prolyl-L-prolinal (ZPP) or LV-shPRCP enhanced the excitatory synaptic transmission in NAcsh, facilitating stress susceptibility via central melanocortin receptors. On the contrary, overexpression of PRCP in NAcsh by microinjection of AAV-PRCP alleviated the depressive-like behavior and reversed the enhanced excitatory synaptic transmission, abnormal dendritogenesis and spinogenesis in NAcsh induced by chronic stress. Furthermore, chronic stress increased the level of CaMKIIα, a kinase closely related to synaptic plasticity, in NAcsh. The elevated level of CaMKIIα was reversed by overexpression of PRCP in NAcsh. Pharmacological inhibition of CaMKIIα in NAcsh alleviated stress susceptibility induced by PRCP knockdown. This study has revealed the essential role of PRCP in relieving stress susceptibility through melanocortin signaling-mediated synaptic plasticity in NAcsh.


Asunto(s)
Trastorno Depresivo Mayor , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/metabolismo , alfa-MSH/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Melanocortina/metabolismo , Estrés Psicológico
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769099

RESUMEN

Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Citoesqueleto/metabolismo , Lenguaje
9.
Biol Open ; 12(1)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36537579

RESUMEN

The mammalian superior colliculus and its non-mammalian homolog, the optic tectum (OT), are midbrain structures that integrate multimodal sensory inputs and guide non-voluntary movements in response to prevalent stimuli. Recent studies have implicated this structure as a possible site affected in autism spectrum disorder (ASD). Interestingly, fetal exposure to valproic acid (VPA) has also been associated with an increased risk of ASD in humans and animal models. Therefore, we took the approach of determining the effects of VPA treatment on zebrafish OT development as a first step in identifying the mechanisms that allow its formation. We describe normal OT development during the first 5 days of development and show that in VPA-treated embryos, neuronal specification and neuropil formation was delayed. VPA treatment was most detrimental during the first 3 days of development and did not appear to be linked to oxidative stress. In conclusion, our work provides a foundation for research into mechanisms driving OT development, as well as the relationship between the OT, VPA, and ASD. This article has an associated First Person interview with one of the co-first authors of the paper.


Asunto(s)
Trastorno del Espectro Autista , Ácido Valproico , Humanos , Animales , Ácido Valproico/efectos adversos , Pez Cebra , Colículos Superiores , Neurogénesis , Mamíferos
10.
Front Cell Neurosci ; 16: 941620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910251

RESUMEN

Electrical activity is considered a key driver for the neurochemical and morphological maturation of neurons and the formation of neuronal networks. Designer receptors exclusively activated by designer drugs (DREADDs) are tools for controlling neuronal activity at the single cell level by triggering specific G protein signaling. Our objective was to investigate if prolonged silencing of differentiating cortical neurons can influence dendritic and axonal maturation. The DREADD hM4Di couples to Gi/o signaling and evokes hyperpolarization via GIRK channels. HM4Di was biolistically transfected into neurons in organotypic slice cultures of rat visual cortex, and activated by clozapine-N-oxide (CNO) dissolved in H2O; controls expressed hM4Di, but were mock-stimulated with H2O. Neurons were analyzed after treatment for two postnatal time periods, DIV 5-10 and 10-20. We found that CNO treatment delays the maturation of apical dendrites of L2/3 pyramidal cells. Further, the number of collaterals arising from the main axon was significantly lower, as was the number of bouton terminaux along pyramidal cell and basket cell axons. The dendritic maturation of L5/6 pyramidal cells and of multipolar interneurons (basket cells and bitufted cells) was not altered by CNO treatment. Returning CNO-treated cultures to CNO-free medium for 7 days was sufficient to recover dendritic and axonal complexity. Our findings add to the view that activity is a key driver in particular of postnatal L2/3 pyramidal cell maturation. Our results further suggest that inhibitory G protein signaling may represent a factor balancing the strong driving force of neurotrophic factors, electrical activity and calcium signaling.

11.
Dev Biol ; 486: 5-14, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306006

RESUMEN

Many membrane proteins are highly enriched in either dendrites or axons. This non-uniform distribution is a critical feature of neuronal polarity and underlies neuronal function. The molecular mechanisms responsible for polarized distribution of membrane proteins has been studied for some time and many answers have emerged. A less well studied feature of neurons is that organelles are also frequently non-uniformly distributed. For instance, EEA1-positive early endosomes are somatodendritic whereas synaptic vesicles are axonal. In addition, some organelles are present in both axons and dendrites, but not distributed uniformly along the processes. One well known example are lysosomes which are abundant in the soma and proximal dendrite, but sparse in the distal dendrite and the distal axon. The mechanisms that determine the spatial distribution of organelles along dendrites are only starting to be studied. In this review, we will discuss the cell biological mechanisms of how the distribution of diverse sets of endosomes along the proximal-distal axis of dendrites might be regulated. In particular, we will focus on the regulation of bulk homeostatic mechanisms as opposed to local regulation. We posit that immature dendrites regulate organelle motility differently from mature dendrites in order to spatially organize dendrite growth, branching and sculpting.


Asunto(s)
Axones , Dendritas , Axones/metabolismo , Dendritas/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo
12.
Trends Neurosci ; 45(2): 106-119, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34815102

RESUMEN

Brain circuit development involves tremendous structural formation and rearrangement of dendrites, axons, and the synaptic connections between them. Direct studies of neuronal morphogenesis are now possible through recent developments in multiple technologies, including single-neuron labeling, time-lapse imaging in intact tissues, and 4D rendering software capable of tracking neural growth over periods spanning minutes to days. These methods allow detailed quantification of structural changes of neurons over time, called dynamic morphometrics, providing new insights into fundamental growth patterns, underlying molecular mechanisms, and the intertwined influences of external factors, including neural activity, and intrinsic genetic programs. Here, we review the methods of dynamic morphometrics sampling and analyses, focusing on their applications to studies of activity-driven dendritogenesis in vertebrate systems.


Asunto(s)
Dendritas , Neuronas , Axones , Dendritas/fisiología , Humanos , Neurogénesis/fisiología , Neuronas/fisiología
13.
Int J Mol Sci ; 22(11)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204060

RESUMEN

The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.


Asunto(s)
Orientación del Axón/fisiología , Señales (Psicología) , Modelos Neurológicos , Neuronas/fisiología , Semaforinas/metabolismo , Animales , Humanos , Plasticidad Neuronal/fisiología
14.
Mol Neurobiol ; 58(10): 5210-5223, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34272687

RESUMEN

Fetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/enzimología , Desarrollo Embrionario/efectos de los fármacos , Etanol/toxicidad , Efectos Tardíos de la Exposición Prenatal/enzimología , Familia-src Quinasas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Desarrollo Embrionario/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
15.
Neuroscience ; 453: 148-167, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33246055

RESUMEN

Fibroblast Growth Factor Receptors (FGFRs) play crucial roles in promoting dendrite growth and branching during development. In mice, three FGFR genes, Fgfr1, Fgfr2, and Fgfr3, remain expressed in the adult neurogenic niche of the hippocampal dentate gyrus. However, the function of FGFRs in the dendritic maturation of adult-born neurons remains largely unexplored. Here, using conditional alleles of Fgfr1, Fgfr2, and Fgfr3 as well as Fgfr1 alleles lacking binding sites for Phospholipase-Cγ (PLCγ) and FGF Receptor Substrate (FRS) proteins, we test the requirement for FGFRs in dendritogenesis of adult-born granule cells. We find that deleting all three receptors results in a small decrease in proximal dendrite elaboration. In contrast, specifically mutating Tyr766 in FGFR1 (a PLCγ binding site) in an Fgfr2;Fgfr3 deficient background results in a dramatic increase of overall dendrite elaboration, while blocking FGFR1-FRS signaling causes proximal dendrite deficits and, to a lesser extent than Tyr766 mutants, increases distal dendrite elaboration. These findings reveal unexpectedly complex roles for FGFRs and their intracellular mediators in regulating proximal and distal dendrite elaboration, with the most notable role in suppressing distal elaboration through the PLCγbinding site.


Asunto(s)
Dendritas , Neuronas , Receptores de Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal , Animales , Dendritas/metabolismo , Ratones , Neurogénesis , Neuronas/metabolismo , Fosforilación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
16.
Autism ; 25(2): 464-489, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33143449

RESUMEN

LAY ABSTRACT: Autism spectrum disorders and Williams syndrome are complex cognitive conditions exhibiting quite opposite features in the social domain: whereas people with autism spectrum disorders are mostly hyposocial, subjects with Williams syndrome are usually reported as hypersocial. At the same time, autism spectrum disorders and Williams syndrome share some common underlying behavioral and cognitive deficits. It is not clear, however, which genes account for the attested differences (and similarities) in the socio-cognitive domain. In this article, we adopted a comparative molecular approach and looked for genes that might be differentially (or similarly) regulated in the blood of people with these conditions. We found a significant overlap between genes dysregulated in the blood of patients compared to neurotypical controls, with most of them being upregulated or, in some cases, downregulated. Still, genes with similar expression trends can exhibit quantitative differences between conditions, with most of them being more dysregulated in Williams syndrome than in autism spectrum disorders. Differentially expressed genes are involved in aspects of brain development and function (particularly dendritogenesis) and are expressed in brain areas (particularly the cerebellum, the thalamus, and the striatum) of relevance for the autism spectrum disorder and the Williams syndrome etiopathogenesis. Overall, these genes emerge as promising candidates for the similarities and differences between the autism spectrum disorder and the Williams syndrome socio-cognitive profiles.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Síndrome de Williams , Trastorno del Espectro Autista/genética , Cognición , Expresión Génica , Humanos , Síndrome de Williams/genética
17.
Mol Brain ; 13(1): 168, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317577

RESUMEN

Dysfunctional dendritic arborization is a key feature of many developmental neurological disorders. Across various human brain regions, basal dendritic complexity is known to increase along a caudal-to-rostral gradient. We recently discovered that basal dendritic complexity of layer II/III cortical pyramidal neurons in the mouse increases along a caudomedial-to-rostrolateral gradient spanning multiple regions, but at the time, no molecules were known to regulate that exquisite pattern. Integrin subunits have been implicated in dendritic development, and the subunit with the strongest associations with autism spectrum disorder and intellectual disability is integrin ß3 (Itgb3). In mice, global knockout of Itgb3 leads to autistic-like neuroanatomy and behavior. Here, we tested the hypothesis that Itgb3 is required for increasing dendritic complexity along the recently discovered tangential gradient among layer II/III cortical pyramidal neurons. We targeted a subset of layer II/III cortical pyramidal neurons for Itgb3 loss-of-function via Cre-loxP-mediated excision of Itgb3. We tracked the rostrocaudal and mediolateral position of the targeted neurons and reconstructed their dendritic arbors. In contrast to controls, the basal dendritic complexity of Itgb3 mutant neurons was not related to their cortical position. Basal dendritic complexity of mutant and control neurons differed because of overall changes in branch number across multiple branch orders (primary, secondary, etc.), rather than any changes in the average length at those branch orders. Furthermore, dendritic spine density was related to cortical position in control but not mutant neurons. Thus, the autism susceptibility gene Itgb3 is required for establishing a tangential pattern of basal dendritic complexity among layer II/III cortical pyramidal neurons, suggesting an early role for this molecule in the developing brain.


Asunto(s)
Corteza Cerebral/citología , Dendritas/metabolismo , Integrina beta3/metabolismo , Células Piramidales/metabolismo , Animales , Espinas Dendríticas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Integrina beta3/genética , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/metabolismo
18.
Front Cell Neurosci ; 14: 570596, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192315

RESUMEN

A battery of genetically encoded calcium indicators (GECIs) with different binding kinetics and calcium affinities was developed over the recent years to permit long-term calcium imaging. GECIs are calcium buffers and therefore, expression of GECIs may interfere with calcium homeostasis and signaling pathways important for neuronal differentiation and survival. Our objective was to investigate if the biolistically induced expression of five commonly used GECIs at two postnatal time points (days 14 and 22-25) could affect the morphological maturation of cortical neurons in organotypic slice cultures of rat visual cortex. Expression of GCaMP3 in both time windows, and of GCaMP5G and TN-XXL in the later time window impaired apical and /or basal dendrite growth of pyramidal neurons. With time, the proportion of GECI transfectants with nuclear filling increased, but an only prolonged expression of TN-XXL caused higher levels of neurodegeneration. In multipolar interneurons, only GCaMP3 evoked a transient growth delay during the early time window. GCaMP6m and GCaMP6m-XC were quite "neuron-friendly." Since growth-impaired neurons might not have the physiological responses typical of age-matched wildtype neurons the results obtained after prolonged developmental expression of certain GECIs might need to be interpreted with caution.

19.
Front Cell Dev Biol ; 8: 580657, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102486

RESUMEN

During development the vast majority of cells that will later compose the mature cerebral cortex undergo extensive migration to reach their final position. In addition to intrinsically distinct migratory behaviors, cells encounter and respond to vastly different microenvironments. These range from axonal tracts to cell-dense matrices, electrically active regions and extracellular matrix components, which may all change overtime. Furthermore, migrating neurons themselves not only adapt to their microenvironment but also modify the local niche through cell-cell contacts, secreted factors and ions. In the radial dimension, the developing cortex is roughly divided into dense progenitor and cortical plate territories, and a less crowded intermediate zone. The cortical plate is bordered by the subplate and the marginal zone, which are populated by neurons with high electrical activity and characterized by sophisticated neuritic ramifications. Neuronal migration is influenced by these boundaries resulting in dramatic changes in migratory behaviors as well as morphology and electrical activity. Modifications in the levels of any of these parameters can lead to alterations and even arrest of migration. Recent work indicates that morphology and electrical activity of migrating neuron are interconnected and the aim of this review is to explore the extent of this connection. We will discuss on one hand how the response of migrating neurons is altered upon modification of their intrinsic electrical properties and whether, on the other hand, the electrical properties of the cellular environment can modify the morphology and electrical activity of migrating cortical neurons.

20.
eNeuro ; 7(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32641498

RESUMEN

Disruptions in neuronal dendrite development alter brain circuitry and are associated with debilitating neurological disorders. Nascent apical dendrites of cortical excitatory neurons project into the marginal zone (MZ), a cell-sparse layer characterized by intense chondroitin sulfate proteoglycan (CSPG) expression. Paradoxically, CSPGs are known to broadly inhibit neurite growth and regeneration. This raises the possibility that the growing apical dendrite is somehow insensitive to CSPG-mediated neurite growth inhibition. To test this, developing cortical neurons were challenged with both soluble CSPGs and CSPG-positive stripe substrates in vitro Soluble CSPGs inhibited dendritic growth and cortical dendrites respected CSPG stripe boundaries, effects that could be counteracted by prior CSPG inactivation by chondroitinase. Importantly, addition of Reelin, an extracellular signaling protein highly expressed in the MZ, partially rescued dendritic growth in the presence of CSPGs. High-resolution confocal imaging revealed that the CSPG-enriched areas of the MZ spatially correspond with the areas of reduced dendritic density in the Reelin null (reeler) cortex compared with controls. Chondroitinase injections into reeler explants resulted in increased dendritic growth into the MZ, recovering to near wild-type levels. Activation of the serine threonine kinase Akt is required for Reelin-dependent dendritic growth and we find that CSPGs induce Akt dephosphorylation, an effect that can be counteracted by Reelin addition. In contrast, CSPG application had no effect on the cytoplasmic adaptor Dab1, which is rapidly phosphorylated in response to Reelin and is upstream of Akt. These findings suggest CSPGs do inhibit cortical dendritic growth, but this effect can be counteracted by Reelin signaling.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Dendritas , Neurogénesis , Neuronas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA