Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202414271, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294099

RESUMEN

The synthesis of single-crystalline and robust pyrazolate metal-organic frameworks (Pz-MOFs) capable of facilitating challenging organic transformations is fundamentally significant in catalysis. Here we demonstrate a metal-node-based catalytic site anchoring strategy by synthesizing a single-crystalline and robust Pz-MOF (PCN-1004). PCN-1004 features one-dimensional (1D) copper-Pz chains interconnected by well-organized ligands, forming a porous three-dimensional (3D) network with two types of 1D open channels. Notably, PCN-1004 displays exceptional stability in aqueous solutions across a broad pH range (1 to 14), attributed to the robust copper-Pz coordination bonds. Significantly, PCN-1004 functions as an outstanding catalyst in cross dehydrogenative coupling reactions for constructing C-O/C-S bonds, even in the absence of directing groups, achieving yields of up to ~99%, with long cycle lives and high substrate compatibility. PCN-1004 outperforms all previously reported porphyrin-based homogeneous and heterogeneous catalysts. Control experiments and computations elucidate the pivotal catalytic role of the copper-Pz chains and reveal a free radical pathway for the reaction. This work not only demonstrates the successful implementation of a metal-node-based catalytic site anchoring strategy for the efficient catalysis of challenging organic transformations but also highlights the synergistic effect of a robust framework, 1D open channels, and active sites in enhancing catalytic efficiency within MOFs.

2.
European J Org Chem ; 27(23)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-39051029

RESUMEN

n-Bu4NI/K2S2O8 mediated C-N coupling between aldehydes and amides is reported. A strong electronic effect is observed on the aromatic aldehyde substrates. The transformylation from aldehyde to amide takes place exclusively when an aromatic aldehyde bears electron-donating groups at either the ortho or para position of the formyl group, while the cross-dehydrogenative coupling dominates in the absence of these groups. Both the density functional theory (DFT) thermochemistry calculations and experimental data support the proposed single electron transfer mechanism with the formation of an acyl radical intermediate in the cross-dehydrogenative coupling. The n-Bu4NI/K2S2O8 mediated oxidative cyclization between 2-aminobenzamide and aldehydes is also reported, with four quinazolin-4(3H)-ones prepared in 65-99% yields.

3.
Chemistry ; : e202402355, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963800

RESUMEN

The oxidative formation of N-N bonds from primary amides has been recently reported and then retracted in the journal Nature Communications by Kathiravan, Nicholls, and coauthors, utilizing a hypervalent iodane reagent. Unfortunately, the authors failed to recognize the Curtius reaction taking place under the described reaction conditions. Thus, the claimed N-N coupling products were not formed. Instead, the Curtius rearrangement urea coupling products were obtained. We demonstrate this herein by means of NMR and x-ray analysis, as well as with the support of an alternative synthetic route.

4.
Chemistry ; : e202402168, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072825

RESUMEN

The acceptorless dehydrogenation reaction is a sustainable and atom-economical methodology in organic synthesis, resulting in the byproducts of only hydrogen or water. Herein, a robust Co-Si/CN catalyst (derived from ZIF@SiO2 composite) has been synthesized through a one-step assembly process via pyrolysis and etching. This catalyst has been employed for the acceptorless dehydrogenative coupling of 2-aminoalcohols with secondary alcohols, enabling efficient conversion of various substrates into desired quinoline or pyridine derivatives with a yield of up to 94.

5.
Chemistry ; 30(47): e202401698, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38899378

RESUMEN

An air-stable, inexpensive, and isolable cobalt(II) complex (C1) of N-((1-methyl-1H-imidazol-2-yl)methyl)-2-(phenylselanyl)ethan amine (L1) was synthesized and characterized. The complex was used to catalyze a one-pot cascade reaction between 2-(2-aminophenyl)ethanols and benzyl alcohol derivatives. Interestingly, 2-aryl-3-formylindole derivatives were formed instead of N-alkylated or C-3 alkylated indoles. A broad substrate scope can be activated using this protocol with only 5.0 mol % catalyst loading to achieve up to 87 % yield of 2-aryl-3-formylindole derivatives. The mechanistic studies suggested that the reaction proceeds through tandem imine formation followed by cyclization.

6.
Angew Chem Int Ed Engl ; 63(36): e202410003, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38840456

RESUMEN

For the upcycling of waste polyethylene terephthalate (PET), encompassing both colored and fabric PET materials, we investigated the Ir(triNHC)-catalyzed dehydrogenative coupling of PET and methanol, leading to the production of sodium lactate with good yields. We proposed a sustainable method for isolating lactic acid from the catalytic reaction mixture of sodium lactate and regenerating the base using bipolar membrane electrodialysis (BMED). This isolation method demonstrated high effectiveness, achieving isolation of lactic acid while maintaining economic feasibility at $ 0.10 per kg of lactic acid, and enabling sustainable NaOH regeneration with complete resource circulation. We assessed the recyclability of the catalyst and elucidated the mechanism involving base-mediated depolymerization and catalyst-promoted dehydrogenation, highlighting the importance of triNHC ligands in enhancing catalytic activity.

7.
Beilstein J Org Chem ; 20: 1292-1297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887568

RESUMEN

Redox active phenotellurazine catalysts have been recently utilized in two different cross-dehydrogenative coupling reactions. In this study, we revisit the design of the phenotellurazine redox catalysts. In particular, we investigate the level of cooperativity between the Te- and N-centers, the effect of secondary versus tertiary N-centers, the effect of heterocyclic versus non-heterocyclic structures, and the effect of substitution patterns on the redox catalytic activity.

8.
Chemistry ; 30(42): e202303861, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38751155

RESUMEN

The Guerbet reaction is important for the synthesis of longer-chain monoalcohols like isobutanol through catalytic transfer hydrogenation from short-chain methanol and ethanol. However, the mechanism becomes complicated, especially considering the variations in the different metal-ligand cooperation (MLC) catalysts used. In order to further understand the Guerbet reaction, DFT studies were performed to figure out the detailed mechanism initiated by the unique Mn-PCP MLC Catalyst. Our results suggest that even with the assistance of the carbanion site of the PCP ligand, the direct substitution mechanism is less favored than the condensation-reduction mechanism. The key step of the reaction is the final reduction of the carbonyl, in which the 1,4-reduction of the unsaturated aldehyde is prior to the 3,4-reduction or 1,2-reduction due to the stronger interaction between the catalyst and the substrate. It is found that the production of isobutanol is preferred over n-butanol because of the lower total free energy barrier and lower relative free energy of the product. Finally, by changing the electronic effect of the carbanion site of the catalyst, we found that the relation between the electronic effect and the highest free energy span was not monotonous and a point with optimal electronic effect exists numerically.

9.
Sci Rep ; 14(1): 12342, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811830

RESUMEN

An acidic tungstate-based zwitterionic organosilica drived simple self-condensation of tungstic acid and zwitterionic organosilane (PMO-IL-WO42-), was remarkably demonstrated to be highly efficient and environmentally friendly catalyst for directly selective synthesis of benzimidazoles from benzyl alcohols under atmpshpheric air pressure and without any additional oxidant. The one-pot synthesis of benzimidazoles from benzyl alcohols and 1,2-phenylenediamine was efficiently achieved via direct dehydrogenative reaction using a low amount of recoverable PMO-IL-WO42- nanocatalyst in water under ambient conditions with a conversion efficiency of more than 90%. Enhancements in yield and selectivity of benzimidazole formation were observed when water was utilized as the solvent. Furthermore, the PMO-IL-WO42- nanocatalyst exhibited exceptional stability, demonstrating the ability to be effortlessly separated and reused for at least eight reaction cycles without any noticeable loss in activity or product selectivity. This method supports an eco-friendly atom economy and provides a sustainable approach to accessing benzimidazoles directly from benzyl alcohols under mild conditions, demonstrating its potential for practical applications in organic synthesis.

10.
Chemistry ; 30(36): e202401105, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38655822

RESUMEN

This report detailed the synthesis of multi-substituted pyrazoles through the acceptorless dehydrogenative coupling (ADC) reaction catalyzed by a well-defined manganese(I)-pincer complex. Symmetrically substituted pyrazoles were synthesized by reacting 1,3-diols with hydrazines. Unsymmetrically substituted pyrazoles were selectively made via the ADC of primary alcohols with methyl hydrazones. Water and hydrogen are liberated as the green byproducts. The endurance of these methodologies has been presented by producing 30 substrates with varied functionalities. Model reactions were scaled up to demonstrate practicability. The reaction rate and order were measured to transparent the involvement of the reagents during catalysis. Control experiments elucidated the plausible reaction mechanisms.

12.
Chemistry ; 30(15): e202304082, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38231839

RESUMEN

Chemodivergent (de)hydrogenative coupling of primary and secondary alcohols is achieved utilizing an inexpensive nickel catalyst, (6-OH-bpy)NiCl2 . This protocol demonstrates the synthesis of branched carbonyl compounds, α,α-disubstituted ketones, and α-substituted chalcones via borrowing hydrogen strategy and acceptorless dehydrogenative coupling, respectively. A wide range of aryl-based secondary alcohols are coupled with various primary alcohols in this tandem dehydrogenation/hydrogenation reaction. The nickel catalyst, along with KOt Bu or K2 CO3 , governed the selectivity for the formation of branched saturated ketones or chalcones. A preliminary mechanistic investigation confirms the reversible dehydrogenation of alcohols to carbonyls via metal-ligand cooperation (MLC) and the involvement of radical intermediates during the reaction.

13.
Chemistry ; 30(10): e202302929, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175849

RESUMEN

Sustainability in chemical processes is a crucial aspect in contemporary chemistry with sustainable catalysis as a vital parameter of the same. There has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions. Furan is a versatile heterocycle of natural origin used for multiple applications. However, it has scarcely been used in cross-dehydrogenative coupling. In this work, we have explored the cross-dehydrogentive coupling of furans with indoles using commonly available, inexpensive FeCl3 ⋅ 6H2 O (<0.25 $/g) as catalyst in the presence of so called 'ultimate oxidant' - oxygen, without the need for any external ligand or additive. The reactions were found to be scalable and to work even under partially aqueous conditions. This makes the reaction highly economical, practical, operationally simple and sustainable. The methodology provides direct access to π-conjugated short oligomers consisting of furan, thiophene and indole. These compounds were found to show interesting fluorescence properties with remarkably large Stokes shift (up to 205 nm). Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by nucleophilic trapping by furan.

14.
Carbohydr Res ; 536: 109018, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185030

RESUMEN

A proficient approach has been developed for the synthesis of substituted 2H-chromenes from C1-substituted glucal. The key step of our synthetic methodology was C-H activation in propylene carbonate solvent followed by 6π-electrocyclization aromatization in ethylene glycol as greener substitutes to toxic aprotic solvents, to obtain 2H-chromenes in a stepwise manner. The application of the developed methodology was further explored with the synthesis of a small library of substituted 2H-chromenes in good yields.


Asunto(s)
Benzopiranos , Paladio , Ciclización , Catálisis
15.
Chempluschem ; 89(1): e202300400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37823322

RESUMEN

Small molecules and polymers with conjugated structures can be used as organic optoelectronic materials. These molecules have conventionally been synthesized by cross-coupling reactions; however, in recent years, direct functionalization of C-H bonds has been used to synthesize organic optoelectronic materials. Representative reactions include direct arylation reactions (C-H/C-X couplings, with X being halogen or pseudo-halogen) and cross-dehydrogenative coupling (C-H/C-H cross-coupling) reactions. Although these reactions are convenient for short-step synthesis, they require regioselectivity in the C-H bonds and suppression of undesired homo-coupling side reactions. This review introduces examples of the synthesis of organic optoelectronic materials using two types of direct C-H functionalization reactions. In addition, we summarize our recent activities in the development of direct C-H functionalization reactions using fluorobenzenes as substrates. This review covers the reaction mechanism and material properties of the resulting products.

16.
Angew Chem Int Ed Engl ; 63(1): e202314256, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985963

RESUMEN

The direct α-alkylation of acyclic carbonyls with nonactivated hydrocarbons through C(sp3 )-H functionalization is both extremely promising and notably challenging, especially when attempting to achieve enantioselectivity using iron-based catalysts. We have identified a robust chiral iron complex for the oxidative cross-coupling of 2-acylimidazoles with benzylic and allylic hydrocarbons, as well as nonactivated alkanes. The readily available and tunable N,N'-dioxide catalysts of iron in connection with oxidants exhibit precise asymmetric induction (up to 99 % ee) with good compatibility in moderate to good yields (up to 88 % yield). This protocol provides an elegant and straightforward access to optically active acyclic carbonyl derivatives starting from simple alkanes without prefunctionalization. Density functional theory (DFT) calculations and control experiments were made to gain insight into the nature of C-C bond formation and the origin of enantioselectivity. We propose a radical-radical cross-coupling process enabled by the immediate interconversion between chiral ferric species and ferrous species.

17.
Angew Chem Int Ed Engl ; 63(2): e202312135, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37926682

RESUMEN

Thiolate-protected gold nanoclusters (AuNCs) have attracted significant attention as nano-catalysts, revealing a superatomic core and gold-thiolate staples as distinct structural units. Here, we demonstrate the unprecedented dual catalytic activity of thiolate-protected [Au25 (SR)18 ]- nanoclusters, involving both photosensitized 1 O2 generation by the Au13 superatomic core and catalytic carbon-carbon bond formation facilitated by Au2 (SR)3 staples. This synergistic combination of two different catalytic units enables efficient cross-dehydrogenative coupling of terminal alkynes and tertiary aliphatic amines to afford propargylamines in high yields of up to 93 %. Mixed-ligand AuNCs bearing both thiolate and alkynyl ligands revealed the intermediacy of the alkynyl-exchanged AuNCs toward both photosensitization and C-C bond-forming catalytic cycles. Density functional theory calculations also supported the intermediacy of the alkynyl-exchanged AuNCs. Thus, the use of ligand-protected metal nanoclusters has enabled the development of an exceptional multifunctional catalyst, wherein distinct nanocluster components facilitate cooperative photo- and chemo-catalysis.

18.
Molecules ; 28(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38138561

RESUMEN

A straightforward and convenient protocol was established for the synthesis of thiophosphates and 3-sulfenylated indoles via low-valent-tungsten-catalyzed aerobic oxidative cross-dehydrogenative coupling reactions. These reactions occur under mild conditions and simple operations with commercially available starting materials, processing the advantage of excellent atom and step economy, broad substrate scope, and good functional groups tolerance. Moreover, this transformation could be practiced on the gram scale, which exhibits great potential in the preparation of drug-derived or bioactive molecules.

19.
Molecules ; 28(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894665

RESUMEN

Selective dehydrogenative silylation is one of the most valuable tools for synthesizing organosilicon compounds. In this study, a regio- and stereoselective ruthenium-catalyzed dehydrogenative intermolecular silylation was firstly developed to access (E)-alkenyl silyl-ether derivatives and silyl-ether heterocycles with good functional group tolerance. Furthermore, two pathways for RuH2(CO)(PPh3)3/NBE-catalyzed dehydrogenative intermolecular silylation of alcohols and alkenes as well as intermolecular silylation of naphthol derivatives were investigated with H2SiEt2 as the hydrosilane reagent.

20.
Molecules ; 28(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764458

RESUMEN

Herein, we report the copper-catalyzed dehydrogenative C(sp2)-N bond formation of 4-pentenamides via nitrogen-centered radicals. This reaction provides a straightforward and efficient preparation method for γ-alkylidene-γ-lactams. Notably, we could controllably synthesize α,ß-unsaturated- or α,ß-saturated-γ-alkylidene-γ-lactams depending on the reaction conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA