Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Pharm Sci ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222747

RESUMEN

This case study demonstrates how knowledge of degradation products together with predictions can establish a lean stability strategy using the accelerated predictive stability (APS) principles. Applying all available data for AZD4831, (R)-1-(2-(1-aminoethyl)-4-chlorobenzyl)-2-thioxo-2,3-dihydro-1H-pyrrolo[3,2-d]pyrimidin-4(5H)-one, a reliable predictive model was developed despite minor differences in technical batch tablet compositions. Early forced degradation studies were performed to map potential degradation pathways. The insights from these studies guided the design of an APS study, which in turn inform on a suitable clinical stability program, initial specification and shelf-life. The use of APS predictions of degradants as well as total impurities highlighted at an early stage, when designing the clinical stability program, the opportunity to identify which degradation product that would be shelf-life limiting. Hence, it was possible to guide the development stability activities and set an initial shelf-life of a tablet formulation. The presented study displays the importance of combining several sources of information in drug development, e.g., potential degradation pathways, accelerated stability, stability program design, metabolite data, and specification limits.

2.
J Pharm Sci ; 113(8): 2055-2064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810881

RESUMEN

This article evaluates the current gaps around the impact of post-manufacturing processes on the product qualities of protein-based biologics, with a focus on user centricity. It includes the evaluation of the regulatory guidance available, describes a collection of scientific literature and case studies to showcase the impact of post-manufacturing stresses on product and dosing solution quality. It also outlines the complexity of clinical handling and the need for communication, and alignment between drug providers, healthcare professionals, users, and patients. Regulatory agencies provide clear expectations for drug manufacturing processes, however, guidance supporting post-product manufacturing handling is less defined and often misaligned. This is problematic as the pharmaceutical products experience numerous stresses and processes which can potentially impact drug quality, safety and efficacy. This article aims to stimulate discussion amongst pharmaceutical developers, health care providers, device manufacturers, and public researchers to improve these processes. Patients and caregivers' awareness can be achieved by providing relevant educational material on pharmaceutical product handling.


Asunto(s)
Productos Biológicos , Humanos , Productos Biológicos/química , Proteínas/química , Control de Calidad , Industria Farmacéutica/métodos
3.
J Pharm Sci ; 113(8): 2542-2551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815860

RESUMEN

Rotigotine (RTG) is a dopamine agonist used in the treatment of Parkinson's disease. As it is susceptible to oxidation, stability studies must be carefully designed for the identification and characterization of all possible degradation products. Here, RTG degradation was evaluated according to the International Conference on Harmonization guidelines under various stress conditions, including acidic and basic hydrolysis, oxidative, metallic, photolytic, and thermal conditions. Additionally, more severe stress conditions were applied to induce RTG degradation. Significant degradation was only observed under oxidative and photolytic conditions. The samples were analyzed by high performance liquid chromatography coupled to photodiode array detectors, charged aerosol, and high-resolution mass spectrometry. Chromatographic analyses revealed the presence of eight substances related to RTG, four of which were already described and were qualified impurities (impurities B, C, K and E) and four new degradation products (DP-1 - DP-4), whose structures were characterized by high-resolution mass spectrometry through Q-Orbitrap and electrospray ionization. In the stress testing of the active pharmaceutical ingredient in solid form, significant RTG degradation was observed in the presence of the oxidative matrix. The results corroborate the literature that confirm the high susceptibility of RTG to oxidation and the importance of using different detectors to detect degradation products in forced degradation studies.


Asunto(s)
Estabilidad de Medicamentos , Espectrometría de Masa por Ionización de Electrospray , Tetrahidronaftalenos , Tiofenos , Cromatografía Líquida de Alta Presión/métodos , Tiofenos/química , Tiofenos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Tetrahidronaftalenos/química , Tetrahidronaftalenos/análisis , Oxidación-Reducción , Agonistas de Dopamina/análisis , Agonistas de Dopamina/química , Hidrólisis , Contaminación de Medicamentos/prevención & control , Fotólisis
4.
J Pharm Sci ; 112(5): 1351-1363, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36646283

RESUMEN

Enzymatic hydrolysis of polysorbate in drug products is a major challenge for the biopharmaceutical industry. Polysorbate hydrolysis caused by host cell proteins (HCPs) co-purified during bioprocessing can reduce the protective effects of the surfactant for the active pharmaceutical ingredient and cause the accumulation of low-solubility degradation products over the long-term storage. The identities of such HCPs are elusive due to their extremely low concentrations after the efficient purification processes of most biopharmaceuticals. In this work, 20 enzymes-selected for their known or putative hydrolytic activity and potential to degrade polysorbate-were recombinantly expressed, purified, and characterized via orthogonal methods. First, these recombinant HCPs were assessed for hydrolytic activity against a fluorogenic esterase substrate in a recently-developed, high-throughput assay. Second, these HCPs were screened for hydrolytic activity against polysorbate in a representative mAb formulation. Third, HCPs that displayed hydrolytic activities in the first two assays were subjected to more detailed characterization of their enzyme kinetics against polysorbates. Finally, these HCPs were evaluated for substrate specificity towards different sub-species of polysorbates. This work provides critical new insights for targeted LC-MS/MS approaches for identification of relevant polysorbate-degrading enzymes and supports improvements to remove such HCPs, including knockouts or targeted removal during purification.


Asunto(s)
Polisorbatos , Espectrometría de Masas en Tándem , Cricetinae , Animales , Polisorbatos/química , Cricetulus , Cromatografía Liquida , Hidrólisis , Células CHO , Anticuerpos Monoclonales/química
5.
J Pharm Sci ; 111(8): 2217-2229, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577116

RESUMEN

Product- and process- related critical quality attributes have the potential to impact pharmacokinetics, immunogenicity, potency, and safety of biotherapeutics. Among these critical quality attributes are chemical degradations, specifically oxidation, deamidation, and isomerization. These degradations can be induced by stressors such as light, pH, or temperature; they can also occur naturally under normal conditions. The immunogenicity risk of chemical degradations, particularly in the absence of aggregation, has not been thoroughly understood. In this study, model antibodies with known labile residues were stressed to induce each of the three chemical degradation classes. Aggregate-free and chemically modified antibody species were fractionalized and characterized, followed by testing in standardized and qualified preclinical immunogenicity risk assessment assays for dendritic cell internalization and presentation, monocyte activation, and pre-existing reactivity. Preclinical immunogenicity risk was assessed holistically in vitro based on changes in innate activation risk, CD4 T cell risk, and B cell risk compared to corresponding native antibody. The results of this study suggest an overall moderate increase in immune activation potential for the antibody with isomerization, with only slight increases observed in oxidized and deamidated antibodies. These findings could lend understanding to the immunogenicity risk of chemical degradations in therapeutic antibodies and therefore inform optimization engineering at particular labile residues and risk assessment under the Quality by Design framework.


Asunto(s)
Anticuerpos , Inmunidad , Isomerismo , Oxidación-Reducción , Medición de Riesgo
6.
J Pharm Sci ; 111(7): 1868-1878, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351496

RESUMEN

Gene therapies delivered using adeno-associated virus (AAV) vectors are showing promise for many diseases. Frozen AAV drug products are exposed to freeze-thaw (F/T) cycles during manufacturing, storage, and distribution. In this work we studied the mechanisms of AAV capsid rupture during F/T. We found that exposure to interfaces, exacerbated by F/T, and the mechanical force of excipient devitrification correlated with AAV capsid rupture during F/T. There was no impact of pH shifts, cryo-concentration, or cold-denaturation. Results were similar for AAV8 and AAV9. With these mechanistic insights we identified three formulation mitigation approaches. Addition of ≥0.0005% w/v poloxamer 188 (P188) eliminated substantial recovery losses (up to ∼60% without P188) and minimized rupture to ≤1% per F/T cycle. Elimination of exothermic devitrification events during rewarming, either by formulating with a low buffer concentration, or by adding a cryoprotectant further reduced rupture during F/T. Rupture of AAV9 was <0.2% per F/T cycle in a formulation with 1 mM phosphate, 4.4 mM dextrose, electrolytes, and 0.001% P188 at pH 7.2. Rupture of AAV8 was not detected when formulated with 4% sucrose, 100 mM salt, and 0.001% P188 at pH 7.4. These results provide insights into effective strategies for stabilizing AAVs against rupture during F/T.


Asunto(s)
Cápside , Dependovirus , Proteínas de la Cápside/genética , Dependovirus/genética , Congelación , Vectores Genéticos
7.
J Pharm Sci ; 111(5): 1346-1353, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999092

RESUMEN

There are an increasing number of clinical studies evaluating different adeno-associated virus (AAV) serotypes as vectors for gene therapy. Long-term frozen storage can maximize the stability of AAV. Freeze-thaw (F/T) cycles and exposures to room temperature (RT) and refrigerated conditions occur during manufacturing, labeling, and clinical use. In this work we exposed AAV8 and AAV9 at low and high concentrations to five F/T cycles compounded with RT and refrigerated holds in a 'daisy chain' time out of intended storage (TOIS) stability study, which may be a best practice in early development. We also evaluated the impact of 5 F/T cycles for multiple permutations of fast and slow cooling and rewarming rates. The quality attributes of AAV8 and AAV9 remained within acceptable ranges after the daisy chain TOIS and F/T rate studies. Potency and concentration were unchanged within method variability. There was a minor increase in non-encapsidated ('free') DNA released from AAV8 after F/T in a phosphate-buffered saline formulation. DNA release during F/T was minimized in a formulation with a low buffer concentration and was not detected in a formulation containing sucrose. We conclude that AAV8 and AAV9 have stability profiles that are suitable for manufacturing and clinical development.


Asunto(s)
Dependovirus , Terapia Genética , ADN , Dependovirus/genética , Congelación , Vectores Genéticos
8.
J Pharm Sci ; 111(1): 41-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34499900

RESUMEN

To reduce the risk of infection during intravitreal injections, the external surface of prefilled syringes (PFSs) must be sterilized. Usually, ethylene oxide (EO) gas or vaporized hydrogen peroxide (VHP) is used for sterilization. More recently, nitrogen dioxide (NO2) gas sterilization has been developed. It is known that gas permeability is approximately zero into glass-PFSs. However, polymer-PFSs (P-PFSs) have relatively high gas permeability. Therefore, there are concerns about the potential impact of external surface sterilization on drug solutions in P-PFSs. In this study, P-PFSs [filled with water for injection (WFI) or human serum albumin (HSA) solution] were externally sterilized using EO, VHP, and NO2 gases. For the WFI-filled syringes, the concentration of each gas that ingressed into the WFI was measured. For the HSA solution-filled syringes, the physical and chemical degradation of HSA molecules by each sterilant gas was quantified. For the EO- or VHP-sterilized syringes, the ingressed EO or hydrogen peroxide (H2O2) molecules were detected in the filled WFI. Additionally, EO-adducted or oxidized HSA molecules were observed in the HSA-filled syringes. In contrast, the NO2-sterilized WFI-filled syringes exhibited essentially immeasurable ingressed NO2, and protein degradation was not detected in HSA-filled syringes.


Asunto(s)
Polímeros , Jeringas , Gases , Humanos , Peróxido de Hidrógeno , Polímeros/química , Esterilización
9.
J Pharm Sci ; 111(5): 1486-1496, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34717953

RESUMEN

The protein complex of recombinant human insulin-like growth factor-1 and insulin­like growth factor binding protein­3 (rhIGF-1/rhIGFBP-3; mecasermin rinfabate), is an investigational product for the prevention of complications of prematurity. Delivery of rhIGF-1/rhIGFBP-3 is by continuous central line intravenous infusion in preterm infants until endogenous IGF-1 production begins. Protein-specific analytical methodologies were developed to evaluate the compatibility of rhIGF-1/rhIGFBP-3 at low protein concentrations (∼2.5-10 µg/mL) expected when co-administered with other required medications in the NICU. Highly sensitive detection of the biologic potential degradants (fragments) and/or molecular modifications (oxidized species, aggregates) required the use of reversed-phase high-performance liquid chromatography and size-exclusion ultra-performance liquid chromatography coupled with mass spectrometric detection. We report on the quantification of rhIGF-1/rhIGFBP-3, its components and degradants, to a limit of quantitation of 3.1 µg/mL upon mixing with 24 commonly administered neonatal medications. Methods developed for the rhIGF-1/rhIGFBP-3 admixtures, optimized in studies with furosemide, caffeine citrate and ampicillin, demonstrated good reproducibility, linearity, and limit of detection/quantitation. Using these methods, no increase in degradation of rhIGF-1/rhIGFBP-3 components and no increase in oxidation or aggregation level was observed with caffeine citrate, while admixtures of rhIGF-1/rhIGFBP-3 with ampicillin yielded lower mass recovery of rhIGF-1/rhIGFBP-3 components, which likely resulted from adduct formation. Furosemide was found to be physically incompatible with rhIGF-1/rhIGFBP-3. Our findings support the use of these methodologies for detection of protein modifications under various clinical administration conditions, and additionally supplement physical compatibility data studies of ultra-low concentrations of rhIGF-1/rhIGFBP-3 post co-administration to preterm infants with other medications (manuscript in-preparation).


Asunto(s)
Furosemida , Factor I del Crecimiento Similar a la Insulina , Ampicilina , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Proteínas Recombinantes , Reproducibilidad de los Resultados
10.
J Pharm Sci ; 111(2): 298-305, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34111446

RESUMEN

Stress testing (also known as forced degradation) of pharmaceutical products has long been recognized as a critical part of the drug development process, providing foundational information related to intrinsic stability characteristics and to the development of stability-indicating analytical methods. A benchmarking study was undertaken by nine pharmaceutical companies and the Brazilian Health Regulatory Agency (Agência Nacional de Vigilância Sanitária, or ANVISA) with a goal of understanding the utility of various stress testing conditions for producing pharmaceutically-relevant chemical degradation of drugs. Special consideration was given to determining whether solution phase stress testing of solid drug products produced degradation products that were both unique when compared to other stress conditions and relevant to the formal drug product stability data. The results from studies of 62 solid dosage form drug products were compiled.  A total of 387 degradation products were reported as being observed in stress testing studies, along with 173 degradation products observed in accelerated and/or long-term stability studies for the 62 drug products.  Among these, 25 of the stress testing degradation products were unique to the solution phase stress testing of the drug products; however, none of these unique degradation products were relevant to the formal stability data. The relevant degradation products were sufficiently accounted for by stress testing studies that included only drug substance stressing (in solution and in the solid state) and drug product stressing (in the solid state). Based on these results, it is the opinion of the authors that for solid dosage form drug products, well-designed stress testing studies need not include solution phase stress testing of the drug product in order to be comprehensive.


Asunto(s)
Benchmarking , Estabilidad de Medicamentos
11.
J Pharm Sci ; 111(7): 1918-1925, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34929157

RESUMEN

Stability is fundamental when exploring a drug candidate's potential as a drug product. During the pharmaceutical industry drug development process information regarding stability and degradation are captured in different departments, e.g. from discovery to operations, and will be included in the overall control strategy. With a profound understanding of a drug candidate's degradation chemistry, a science and risk based approach in progressing a lean stability strategy is possible. This case study present a clear and visible concept to facilitate a lean stability strategy by the use of degradation maps and describes a process for how these can be used during drug development. The understanding of possible and/or observed degradation pathways will guide the design of the drug product and stability studies in development. A degradation map displays degradation pathways with short comments on the reaction/mechanism involved. The degradation map process starts with a theoretical degradation map. The map is updated as the drug project progresses, preferably after forced degradation experiments, after compatibility studies and finally when the late stage formulation is set. The degradation map should be used to capture information of intrinsic chemical properties of the active pharmaceutical ingredient (API) and can thereby be used to mitigate stability issues. The map is foremost a cross-functionally available tool collecting and visualizing stability information throughout the development process, and as such a valuable tool to efficiently develop a lean stability strategy.


Asunto(s)
Desarrollo de Medicamentos , Industria Farmacéutica , Estabilidad de Medicamentos
12.
J Pharm Sci ; 110(10): 3367-3374, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34089708

RESUMEN

The content of monoclonal antibody (mAb) fragments in pharmaceutical mAb products is a critical quality attribute and should be controlled for safety. Peptide bonds in the hinge region of mAbs are susceptible to hydrolysis, generating Fc-Fab fragments, which are associated with lower efficacy than the intact antibody. Fc-Fab fragments can be separated from intact antibody molecules under native conditions by size exclusion chromatography (SEC). Although several fragments generated by a clip in the complementarity determining region (CDR) have been reported, their efficacies have not been analyzed. This is because these fragments could not be separated from intact antibodies under native conditions owing to their similar molecular sizes. Here, we report that bevacizumab variant with clipping in the CDR, with the resulting fragments remaining intact in the variant, can be isolated under native conditions by selecting an adequate SEC column.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Cromatografía en Gel , Regiones Determinantes de Complementariedad , Fragmentos Fc de Inmunoglobulinas
13.
J Pharm Sci ; 110(2): 785-795, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33035535

RESUMEN

Surfactants are essential components in protein formulations protecting them against interfacial stress. One of the current industry-wide challenges is enzymatic degradation of parenteral surfactants such as polysorbate 20 (PS20) and polysorbate 80, which leads to the accumulation of free fatty acids (FFAs) potentially forming visible particles over the drug product shelf-life. While the concentration of FFAs can be quantified, the time point of particle formation remains unpredictable. In this work, we studied the influence of glass leachables as nucleation factors for FFA particle formation. We demonstrate the feasibility of nucleation of FFA particles in the presence of inorganic salts like NaAlO2 and CaCl2 simulating relevant glass leachables. We further demonstrate FFA particle formation depending on relevant aluminum concentrations. FFA particle formation was subsequently confirmed with lauric/myristic acid in the presence of different quantities and compositions of glass leachables obtained by several sterilization cycles using different types of glass vials. We further verified the formation of particles in aged protein formulation containing degraded PS20 through the spiking of glass leachables. Particles were characterized as a complex of glass leachables, such as aluminum and FFAs. Based on our findings, we propose a likely pathway for FFA particle formation that considers specific nucleation factors.


Asunto(s)
Productos Biológicos , Ácidos Grasos no Esterificados , Química Farmacéutica , Estabilidad de Medicamentos , Vidrio , Polisorbatos
14.
J Pharm Biomed Anal ; 194: 113776, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33272786

RESUMEN

Growth Hormone Releasing Peptide-6 (GHRP-6) is a promising molecule (H-His1-d-Trp- Ala-Trp-d-Phe-Lys6-NH2) for the treatment of several diseases. Studies on the degradation pathways of this molecule under stressed conditions are needed to develop appropriate formulations. Degradation products (DPs) of GHRP-6, generated by heating in the dark at 60 °C with pH ranging from 3.0 to 8.0 and in presence of common buffers, were isolated by RP-HPLC and characterized by ESI-MS/MS. C-terminal deamidation of GHRP-6 was generated preferentially at pH 3.0 and 8.0. Hydrolysis and head-to-tail cyclization were favored at pH ranging from 6.0 to 7.0 in phosphate containing buffers. A DP with +12 Da molecular mass was presumably originated by the reaction with formaldehyde derived from some of the additives and/or elastomeric closures. Certain DPs derived from the acylation reaction of the tri- and di-carboxylic buffering species were favored at pH 3.0-6.0 and indicate that buffer components, including those "Generally Recognized as Safe", may potentially introduce chemical modifications and product heterogeneity. Nano LC-MS/MS analysis revealed GHRP-6 was also detected as a low-abundance species with Trp oxidized to 5-hydroxy, kynurenine, and N-formylkynurenine. The kinetics for the formation of the major degradation products was also studied by RP-HPLC.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento , Espectrometría de Masas en Tándem , Concentración de Iones de Hidrógeno , Cinética , Oligopéptidos
15.
J Pharm Sci ; 109(10): 3064-3077, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32653599

RESUMEN

Different types and quality grades of polysorbate (PS) were subjected to oxidative stress (in absence of protein), and novel oxidation markers were discovered by our newly developed liquid chromatography-mass spectrometry (LC-MS) screening method. These markers confirmed that the more homogeneous, PS grades, such as PS80 all-oleate grade (compliant with Chinese pharmacopoeia) and PS20 all-laurate grades are more prone to oxidative degradation compared to their multicompendial grade analogues. In a case study with pharmaceutically relevant monoclonal antibody formulations, we could confirm that the novel oxidation markers are also found in presence of protein. To the best of our knowledge, this is the first report on monitoring of PS oxidation markers in protein containing samples with the help of LC-MS. Based on the observations made in the PS degradation studies, a new hypothesis regarding the mechanism of oxidative PS degradation is suggested: PS oxidation primarily takes place in the PS micelles. This hypothesis was supported experimentally, PS oxidation could no longer be detected if PS micelles were dissolved by tert-butanol. Physiochemical parameters of PS micelles such as density of micelle cores, heterogeneity of PS fatty acid composition, micelle composition and trace metal ions are key driving factors of PS oxidation.


Asunto(s)
Micelas , Polisorbatos , Hidrólisis , Espectrometría de Masas , Oxidación-Reducción
16.
J Pharm Sci ; 109(6): 1883-1895, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173321

RESUMEN

Bepotastine (BPT) is a H1-receptor antagonist. It is used as a besilate salt in ophthalmic solution for allergic conjunctivitis and orally for the treatment of allergic rhinitis and urticaria/pruritus. Its systematic forced degradation study is unreported. The same was carried out in different conditions prescribed by International Conference on Harmonisation. The stressed solutions were subjected to reversed phase liquid chromatographic analysis, and BPT was observed to be labile under photobasic condition only, yielding 5 photodegradation products. The structures of the latter were elucidated from data generated by liquid chromatography-high-resolution mass spectrometry and multistage mass spectrometry. Of the 5, 4 products were further isolated and subjected to nuclear magnetic resonance spectroscopy to justify the proposed structures. Two of them, with similar accurate mass, were additionally and unambiguously characterized from their heteronuclear multiple bond correlation data, hydrogen deuterium exchange mass data, and quantum chemical analysis using density functional theory calculations. One degradation product had a structure that could only be explained by unusual rearrangement involving conversions of N-oxide into hydroxylamine, similar to Meisenheimer rearrangement. The physicochemical, as well as absorption, distribution, metabolism, excretion, and toxicity properties of BPT and its characterized photodegradation products were evaluated in silico by ADMET Predictor™ software.


Asunto(s)
Conjuntivitis Alérgica , Simulación por Computador , Cromatografía de Gases y Espectrometría de Masas , Humanos , Fotólisis , Piperidinas , Piridinas
17.
J Pharm Sci ; 109(1): 633-639, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31758949

RESUMEN

Polysorbates are used ubiquitously in protein therapeutic drugs to help minimize adsorption to surfaces and aggregation. It has been recognized that polysorbate can itself degrade and in turn result in loss of efficacy of therapeutic proteins. We studied the 2 main pathways of polysorbate 80 (PS80) degradation, enzymatic ester hydrolysis, and oxidation. Degraded polysorbates were quantified through mass spectrometry to identify the loss of individual components. Next Langmuir trough adsorption isotherms were used to characterize changes in the surface activity of the degraded polysorbates. PS80 degraded via hydrolysis results in slower surface adsorption rates, whereas the oxidized PS80 show increased surface activity. However, the critical micelle concentration remained unchanged. A monoclonal antibody was formulated with stock and degraded polysorbates to probe their ability to prevent aggregation. Hydrolyzed polysorbate resulted in a large increase in particle formation during shaking stress. Oxidized PS80 was still protective against aggregation for the monoclonal antibody. Monomer loss as measured by SEC was comparable in formulations without PS80 to those with esterase hydrolyzed PS80. Monomer loss for oxidized PS80 was similar to that of nondegraded PS80. Hydrolysis of PS80 resulted in free fatty acids which formed insoluble particles during mechanical agitation which stimulated protein aggregation.


Asunto(s)
Anticuerpos Monoclonales/química , Polisorbatos/química , Tensoactivos/química , Composición de Medicamentos , Estabilidad de Medicamentos , Hidrólisis , Modelos Químicos , Oxidación-Reducción , Agregado de Proteínas , Estabilidad Proteica , Proteolisis , Estrés Mecánico
18.
J Pharm Sci ; 109(1): 6-21, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563512

RESUMEN

The BioPhorum Development Group is an industry-wide consortium enabling networking and sharing of common practices for the development of biopharmaceuticals. Forced degradation studies (FDSs) are often used in biotherapeutic development to assess criticality of quality attributes and in comparability studies to ensure product manufacturing process consistency. To gain an understanding of current industry approaches for FDS, the BioPhorum Development Group-Forced Degradation Point Share group conducted an intercompany collaboration exercise, which included a benchmarking survey and group discussions around FDS of monoclonal antibodies. The results of this industry collaboration provide insights into the practicalities of these characterization studies and how they are being used to support the product lifecycle from innovation to marketed products. The survey requested feedback on the intended purpose, materials, conditions, number and length of time points used, and analytical techniques carried out to give a complete picture of the range of common industry practices. This article discusses the results of this global benchmarking survey across 12 companies and presents these as a guide to a common approach to FDS across the industry which can be used to guide the design of FDS based on chemistry and manufacturing control product life-cycle and biomolecule needs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Productos Biológicos/metabolismo , Química Farmacéutica/métodos , Desarrollo de Medicamentos/métodos , Industria Farmacéutica/métodos , Encuestas y Cuestionarios , Anticuerpos Monoclonales/química , Productos Biológicos/química , Congelación/efectos adversos , Humanos , Estrés Oxidativo/fisiología
19.
J Pharm Sci ; 108(10): 3272-3280, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31173762

RESUMEN

The present study investigated the impact of solid-state disorders generated during milling on the chemical reactivity of simvastatin. An amorphous and a partially crystalline simvastatin powders were generated via cryomilling simvastatin crystals for either 90 or 10 min, respectively. The thoroughly characterized milled powders were stored at 40°C/75% RH, in open and closed containers. The effect of milling and storage conditions on physical stability was investigated using simultaneous small and wide-angle X-ray scattering and differential scanning calorimetry. The chemical degradation was evaluated using liquid chromatography-mass spectrometry. Compared with the fully amorphous state, the partially crystalline simvastatin crystallized to a lower extent in the expense of higher chemical degradation on open storage. The closely stored samples degraded to a lower extent and crystallized to a higher extent than the openly stored ones. However, the trends of the total crystallinity and degradation between amorphous and partially crystalline powders were similar. Small-angle X-ray scattering revealed that the partially crystalline simvastatin comprised a higher extent of nanoscale density heterogeneity than the fully amorphous powder. The overall results pointed toward the role of the remaining amorphous content and the nanoscale and mesoscale density heterogeneity on the chemical reactivity in the disordered simvastatin.


Asunto(s)
Polvos/química , Simvastatina/química , Rastreo Diferencial de Calorimetría/métodos , Cristalización/métodos , Estabilidad de Medicamentos , Tecnología Farmacéutica/métodos , Difracción de Rayos X/métodos
20.
J Pharm Sci ; 108(6): 2022-2032, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30639738

RESUMEN

The aim was to compare the sensitivity of different grades of polysorbate 20 (PS20) and polysorbate 80 (PS80) against enzymatic hydrolysis and oxidative degradation in pharmaceutically relevant buffer systems. For this purpose, a fast liquid chromatography charged aerosol detection method was developed which allows to (1) differentiate between hydrolytic and oxidative PS degradation and (2) to monitor the PS decay over time. Systematic enzymatic and oxidative forced degradation studies were conducted with multicompendial PS20 and PS80, as well as all-laurate PS20 and all-oleate PS80 (with >98% oleic acid, as required by the Chinese Pharmacopoiea since 2015). No differences in the sensitivity toward enzymatic degradation were observed between multicompendial PS and high purity grade PS. However, all-laurate PS20 and all-oleate PS80 have a higher predisposition for oxidative degradation as compared to multicompendial PS20 and PS80. The buffer system used within the study played thereby a key role: histidine showed a protective effect against hydrogen peroxide-induced oxidation, whereas hydrogen peroxide oxidation of PS in acetate buffer was severe under the experimental conditions. Furthermore, ethylenediaminetetraacetic acid protected PS20 and PS80 against oxidative degradation in histidine buffer.


Asunto(s)
Excipientes/química , Polisorbatos/química , Tampones (Química) , Cromatografía Líquida de Alta Presión , Estabilidad de Medicamentos , Ácido Edético/química , Pruebas de Enzimas , Esterasas/química , Hidrólisis , Espectrometría de Masas , Oxidación-Reducción , Peróxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA