Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612180

RESUMEN

Electrical steels are widely used in the electrical industry in the construction of many devices, e.g., power transformer cores and distribution transformers. An important parameter of electrical components that determines the efficiency of devices is energy loss during remagnetization. These losses are influenced, among other factors, by steel cutting processes. The common techniques for cutting electrical materials on industrial lines are mechanical cutting and laser cutting. High-pressure abrasive water jet (AWJ) cutting, unlike the technologies mentioned above, can ensure higher quality of the cut edge and limit the negative impact of the cutting process on the magnetic properties of sheet metal. However, the correct control of the process and the conditions of its implementation comprise a complex issue and require extensive scientific research. This work presents a new approach to cutting electric sheets, involving bundle cutting, which significantly increases the processing efficiency and the dimensional and shape accuracy of the cut details. The tests were carried out for bundles composed of a maximum of 30 sheets, ready to be joined in a stator and rotor in a motor. The influence of processing conditions on the quality of the cut edges of sheet metal, the width of the deformation zone, and the burr height were analyzed. The detailed analysis of the quality of the cut edges of electrical bundled sheets creates new possibilities for controlling the AWJ cutting process in order to obtain a product with the desired functional and operational properties.

2.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445042

RESUMEN

This study investigated the fracture characteristics of plain concrete and polypropylene fiber-reinforced concrete (PFRC) using pre-notched three-point bending beam tests with the digital speckle correlation method (DSCM). Then, the fracture instability behavior of the two types of beams was simulated in finite elements based on the plastic damage model and the cohesion model, for which the applicability was assessed. Furthermore, the stability of the Big Gang Mountain Dam made from plain concrete or PFRC subjected to the earth-quake loading was simulated with the plastic damage model. The results show that the limiting length of the non-local deformation zone can be used as an indicator of instability damage in a concrete structure. The simulation results of the plastic damage model agreed well with the local deformation in the pre-notched three-point bending beam test obtained from the DSCM. The plastic damage model was found to be capable of describing the residual strength phenomenon, which the cohesive model was not capable of. The damage evolution regions of the PFRC dam are strictly constrained in some regions without the occurrence of the local deformation band across the dam, and PFRC can dramatically reduce the failure risk under earthquake loading. The numerical solution proves that PFRC is an advisable material for avoiding failure in concrete dams.

3.
Materials (Basel) ; 15(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499894

RESUMEN

In this study, three parameter optimization methods and two designs of experiments (DOE) were used for the optimization of three major design parameters ((bill diameter (D), billet length (L), and barrier wall design (BWD)) in crown forging to improve the formability of aluminum workpiece for shock absorbers. The first optimization method is the response surface method (RSM) combined with Box-Behnken's experimental design to establish fifteen (15) sets of parameter combinations for research. The second one is the main effects plot method (MEP). The third one is the multiobjective optimization method combined with Taguchi's experimental design method, which designed nine (9) parameter combinations and conducted research and analysis through grey relational analysis (GRA). Initially, a new type of forging die and billet in the controlled deformation zone (CDZ) was established by CAD (computer-aided design) modeling and the finite element method (FEM) for model simulation. Then, this investigation showed that the optimal parameter conditions obtained by these three optimization approaches (RSM, MEP, and multiobjective optimization) are consistent, with the same results. The best optimization parameters are the dimension of the billet ((D: 40 mm, the length of the billet (L): 205 mm, and the design of the barrier wall (BWD): 22 mm)). The results indicate that the optimization methods used in this research all have a high degree of accuracy. According to the research results of grey relational analysis (GRA), the size of the barrier wall design (BWD) in the controllable deformation zone (CDZ) has the greatest influence on the improvement of the preforming die, indicating that it is an important factor to increase the filling rate of aluminum crown forgings. At the end, the optimized parameters are verified by FEM simulation analysis and actual production validation as well as grain streamline distribution, processing map, and microstructure analysis on crown forgings. The novelty of this work is that it provides a novel preforming die through the mutual verification of different optimization methods to solve a typical problem such as material underfill.

4.
Otolaryngol Clin North Am ; 53(2): 213-235, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32033803

RESUMEN

The nasal anatomy of Caucasian people includes thin skin, limited soft tissue volume, a high dorsum, strong cartilaginous framework, and narrow elliptical nasal inlets. A smooth dorsal contour, a well-defined tip, a naturally soft-feeling tip, and a functionally patent nasal valve constitute key objectives for Caucasian rhinoplasty. The author's focus on minimal-impact surgery has resulted in multiple novel techniques, embedded in a coherent algorithmic concept termed the S.O.F.T. (surgery and ongoing care free of trauma) concept. The foundation is the endonasal operation for the entire spectrum of primary and secondary deformities and maximal preservation of anatomic structures.


Asunto(s)
Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Nariz/anatomía & histología , Nariz/cirugía , Rinoplastia/métodos , Femenino , Humanos , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA