Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19119, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155314

RESUMEN

Deformation mechanisms of crystalline solids has been the subject of research for more than two centuries. The theory of dislocations dominates modern views but still has significant gaps demanding the introduction of additional concepts for the coherent quantitative description of physical phenomena. In this work, we propose a coherent geometric description of motion and deformation in crystalline solids as piecewise isometric transformations (PWIT). The latter only includes operations that, similar to interatomic spacing in crystalline lattice, do not alter distances between reference points, i.e. translations, rotations and mirror reflections. The difference between solid-body translations and plastic deformations is that the isometric transformations have discontinuities that in real-life materials realise through dislocations (termination of shifts), disclinations (termination of rotations), and twins (mirror reflections). The conceptual description of plastic deformations as PWIT can be useful for the better description of physical phenomena, proposing new hypothesis, and for developing predictive analytical models. In this paper, the use of this conceptual description enables proposing new hypothesis about the nature of such interesting phenomena in severe plastic deformation as (i) stationary 'solid state turbulence' stage in high pressure torsion, and (ii) rate of mass transfer (mechanically assisted diffusion) in simple-shear deformation.

2.
Discov Med ; 36(187): 1544-1554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190371

RESUMEN

Cardiovascular disease is a significant health concern worldwide, and varied effective treatment and prevention methods have been developed. Among these, tailored biomaterials-based strategies such as stents, scaffolds, patches, and drug delivery systems have emerged as a promising avenue. These devices are designed to match the mechanical and biological mechanisms of the cardiovascular system, ensuring optimal performance and compatibility. By effectively treating or preventing cardiovascular diseases, these devices have the potential to improve patient health outcomes significantly. They can restore blood flow by addressing blocked arteries and regenerate damaged cardiac tissue by delivering bioactive agents or cells directly to the affected area in a targeted, sustained, and controllable manner. Therefore, the objective of this article is to summarize the available evidence on these tailored biomaterial-based tunable cardiovascular devices. This knowledge can help to transform cardiovascular medicine for the treatment or prevention of cardiovascular disease and restore cardiac function to improve patients' quality of life.


Asunto(s)
Materiales Biocompatibles , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/terapia , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Stents , Andamios del Tejido/química , Animales
3.
Materials (Basel) ; 17(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38793462

RESUMEN

The orientation-dependent mechanical behaviors of metallic alloys are governed by deformation mechanisms, but the underlying physics remain to be explored. In this work, the mechanical responses along different orientations and behind the mechanisms of BCC-Fe are investigated by performing molecular dynamic simulations. It is found that the mechanical properties of BCC-Fe exhibit apparent anisotropic characteristics. The <100>-oriented BCC-Fe presents a Young's modulus of E = 147.56 GPa, a strength of σy = 10.15 GPa, and a plastic strain of εy = 0.084 at the yield point, whereas the <111> orientation presents E = 244.84 GPa, σy = 27.57 GPa, and εy = 0.21. Based on classical dislocation theory, the reasons for such orientation-dependent mechanical behaviors are analyzed from the perspective of thermo-kinetic synergy upon deformation. It turns out that the anisotropic mechanical responses of BCC-Fe are associated with the magnitude of the thermodynamic driving force (ΔG) and kinetic energy barrier (Q) for dislocation motion, which dominate the corresponding deformation mechanism. Compared with the low ΔG (6.395 GPa) and high Q (11.95 KJ/mol) of the <100>-oriented BCC-Fe dominated by deformation twinning, the <111> orientation governed by dislocation slip presents a high ΔG (17.37 GPa) and low Q (6.45 KJ/mol). Accordingly, the orientation-dependent deformation behaviors of BCC-Fe are derived from the thermo-kinetic synergy for dislocation motion.

4.
Biomimetics (Basel) ; 8(2)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37218775

RESUMEN

The coconut shell consists of three distinct layers: the skin-like outermost exocarp, the thick fibrous mesocarp, and the hard and tough inner endocarp. In this work, we focused on the endocarp because it features a unique combination of superior properties, including low weight, high strength, high hardness, and high toughness. These properties are usually mutually exclusive in synthesized composites. The microstructures of the secondary cell wall of the endocarp at the nanoscale, in which cellulose microfibrils are surrounded by hemicellulose and lignin, were generated. All-atom molecular dynamics simulations with PCFF force field were conducted to investigate the deformation and failure mechanisms under uniaxial shear and tension. Steered molecular dynamics simulations were carried out to study the interaction between different types of polymer chains. The results demonstrated that cellulose-hemicellulose and cellulose-lignin exhibit the strongest and weakest interactions, respectively. This conclusion was further validated against the DFT calculations. Additionally, through shear simulations of sandwiched polymer models, it was found that cellulose-hemicellulose-cellulose exhibits the highest strength and toughness, while cellulose-lignin-cellulose shows the lowest strength and toughness among all tested cases. This conclusion was further confirmed by uniaxial tension simulations of sandwiched polymer models. It was revealed that hydrogen bonds formed between the polymer chains are responsible for the observed strengthening and toughening behaviors. Additionally, it was interesting to note that failure mode under tension varies with the density of amorphous polymers located between cellulose bundles. The failure mode of multilayer polymer models under tension was also investigated. The findings of this work could potentially provide guidelines for the design of coconut-inspired lightweight cellular materials.

5.
Adv Mater ; 35(36): e2210829, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37257887

RESUMEN

Rapid advances in the engineering application prospects of metal-organic framework (MOF) materials necessitate an urgent in-depth understanding of their mechanical properties. This work demonstrates unprecedented recoverable elastic deformation of Ni-tetraphenylporphyrins (Ni-TCPP) MOF nanobelts with a tensile strain as high as 14%, and a projected yield strength-to-Young's modulus ratio exceeding the theoretical limit (≈10%) for crystalline materials. Based on first-principles simulations, the observed behavior of MOF crystal can be attributed to the mechanical deformation induced conformation transition and the formation of helical configuration of dislocations under high stresses, arising from their organic ligand building blocks in the crystal structures. The investigations of the mechanical properties along with electromechanical properties demonstrate that MOF materials have exciting application potential for biomechanics integrated systems, flexible electronics, and nanoelectromechanical devices.

6.
Materials (Basel) ; 16(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984398

RESUMEN

The dependence of bendability on crystallographic orientations and texture evolution was investigated in a strongly textured Mg-9Al extrusion plate by bending along four directions. Results show that the bars have relatively small and reasonably close bendability when bent along the extrusion direction, transverse direction, and through-thickness direction. In contrast, the bendability of the 45° bar is much larger. Microstructure examination indicates that twins are prevalent in all bars. Furthermore, a detailed analysis of deformation mechanisms suggests that the initial texture transforms towards a basal texture during bending. Nevertheless, the texture transformation efficiency is drastically lower when basal slip-in contrast to tensile twinning-is the dominant deformation mechanism. The difference in texture evolution efficiency was used to rationalize the varied bendability along different directions. The findings of this provide insights into improving the bendability of magnesium alloys.

7.
Materials (Basel) ; 16(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36769925

RESUMEN

In this review paper, the hot compressive deformation mechanisms and processing maps of high-entropy alloys (HEAs) with different chemical compositions and crystal structures are analyzed. The stress exponent (n1) values measured from the series of compression tests for the HEAs performed at different temperatures and strain rates are distributed between 3 and 35, and they are most populated between 3 and 7. Power law breakdown (PLB) is found to typically occur at T/Tm ≤ 0.6 (where T is the testing temperature and Tm is the melting temperature). In AlxCrMnFeCoNi (x = 0-1) and AlxCrFeCoNi (x = 0-1) HEAs, n1 tends to decrease as the concentration of Al increases, suggesting that Al acts as a solute atom that exerts a drag force on dislocation slip motion at high temperatures. The values of activation energy for plastic flow (Qc) for the HEAs are most populated in the range between 300 and 400 kJ/mol. These values are close to the activation energy of the tracer diffusivity of elements in the HEAs ranging between 240 and 408 kJ/mol. The power dissipation efficiency η of the HEAs is shown to follow a single equation, which is uniquely related to n1. Flow instability for the HEAs is shown to occur near n1 = 7, implying that the onset of flow instability occurs at the transition from power law creep to PLB. Processing maps for the HEAs are demonstrated to be represented by plotting η as a function of the Zener-Hollomon parameter (Z = expQcRT, where R is the gas constant). Flow stability prevails at Z ≤ 1012 s-1, while flow instability does at Z ≥ 3 × 1014 s-1.

8.
Materials (Basel) ; 15(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36295212

RESUMEN

High-cycle fatigue (HCF) is a critical property of metastable ß Ti alloys in aerospace applications. In this work, the HCF behavior and corresponding microscale deformation mechanisms of a metastable Ti-5Al-5Mo-5V-1Cr-1Fe (Ti55511) alloy with a basket-weave structure were investigated. HCF and its deformation mechanisms of a Ti55511 alloy were systematically studied in the deformed condition by using a scanning electron microscope (SEM), a transmission electron microscope (TEM), and electron backscatter diffraction (EBSD). It was found that the Ti55511 alloy exhibited an excellent HCF strength (107 cycles, Kt = 1, R = 0.06) of 738 MPa. The fractographic investigation demonstrated that fatigue striations and secondary cracks were the main features in the crack initiation zone. Dislocation analyses indicated that the HCF deformation of the basket-weave microstructure was mainly affected by the dislocation slipping of the primary α (αp) phase. In addition, the dislocation pile-up at the αp/ßtrans interface led to crack initiation. EBSD analyses indicated that the prismatic type slip system of the αp phase was preferentially activated during the HCF deformation process of the Ti55511 alloy, followed by the basal type and pyramid type systems.

9.
Geophys Res Lett ; 49(16): e2022GL098945, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36249466

RESUMEN

Antigorite serpentinite is expected to occur in parts of subduction plate boundaries, and may suppress earthquake slip, but the dominant deformation mechanisms and resultant rheology of antigorite are unclear. An exhumed plate boundary shear zone exposed near Nagasaki, Japan, contains antigorite deformed at 474°C ± 30°C. Observations indicate that a foliation defined by (001) crystal facets developed during plate-boundary shear. Microstructures indicating grain-scale dissolution at high-stress interfaces and precipitation in low-stress regions suggest that dissolution-precipitation creep contributed to foliation development. Analysis of crystal orientations indicate a small contribution from dislocation activity. We suggest a frictional-viscous rheology for antigorite, where dissolution-precipitation produces a foliation defined by (001) crystal facets and acts to resolve strain incompatibilities, allowing for efficient face-to-face sliding between facets. This rheology can not only explain aseismic behavior at ambient plate boundary conditions, but also some of the contrasting behaviors shown by previous field and laboratory studies.

10.
Polymers (Basel) ; 14(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054644

RESUMEN

Current recycling technologies rarely achieve 100% pure plastic fractions from a single polymer type. Often, sorted bales marked as containing a single polymer type in fact contain small amounts of other polymers as contaminants. Inevitably, this will affect the properties of the recycled plastic. This work focuses on understanding the changes in tensile deformation mechanism and the related mechanical properties of the four dominant types of polyolefin (PO) (linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP)), contaminated with three different non-polyolefin (NPO) polymers (polyamide-6 (PA-6), polyethylene terephthalate (PET), and polystyrene (PS)). Under the locally elevated stress state induced by the NPO phase, the weak interfacial adhesion typically provokes decohesion. The resulting microvoids, in turn, initiate shear yielding of the PO matrix. LLDPE, due to the linear structure and intercrystalline links, is well able to maintain high ductility when contaminated. LDPE shows deformation similar to the pure material, but with decreasing ductility as the amount of NPO increases. Addition of 20 wt% PA-6, PET, and PS causes a drop in strain at break of 79%, 63%, and 84%, respectively. The typical ductile necking of the high-crystalline HDPE and PP is strongly disturbed by the NPO phase, with a transition even to full brittle failure at high NPO concentration.

11.
Polymers (Basel) ; 15(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36616416

RESUMEN

Samples of polyethylene with extended-chain crystal morphology, obtained by crystallization under high pressure, were subjected to uniaxial compression to various strains. Accompanying structural changes were analyzed using scanning electron microscopy. At the true strain of e = 0.2−0.3 the microbuckling instability was observed in longitudinally loaded lamellae, resulting in the formation of angular kinks. This induced a rapid reorientation of the lamellae, facilitating their further deformation by crystallographic slip. Microbuckling instability was found to occur earlier than in samples with folded-chain crystal morphology (e = 0.3−0.4) due to a smaller ratio of the amorphous to crystalline layer thickness. SEM observations demonstrated that the microbuckling instability begins with small undulation in long lamellae. Sharp angular lamellar kinks develop from the initial undulation through intense plastic deformation by crystallographic slip along the chain direction. The same slip system was found to operate throughout the kink, including the tip region as well as both limbs. In contrast to thin folded-chain lamellae that often undergo fragmentation during deformation, the thick extended-chain lamellae deform stably by chain slip and retain their continuity up to high strains, e > 1.6. This stability of deformation is related to the large thickness of extended-chain lamellae.

12.
Polymers (Basel) ; 13(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960984

RESUMEN

The ability of PLLA, either amorphous or semicrystalline, to plastic deformation to large strain was investigated in a wide temperature range (Td = 70-140 °C). Active deformation mechanisms have been identified and compared for two different deformation modes-uniaxial drawing and plane-strain compression. The initially amorphous PLLA was capable of significant deformation in both tension and plane-strain compression. In contrast, the samples of crystallized PLLA were found brittle in tensile, whereas they proved to be ductile and capable of high-strain deformation when deformed in plane-strain compression. The main deformation mechanism identified in amorphous PLLA was the orientation of chains due to plastic flow, followed by strain-induced crystallization occurring at the true strain above e = 0.5. The oriented chains in amorphous phase were then transformed into oriented mesophase and/or oriented crystals. An upper temperature limit for mesophase formation was found below Td = 90 °C. The amount of mesophase formed in this process did not exceed 5 wt.%. An additional mesophase fraction was generated at high strains from crystals damaged by severe deformation. After the formation of the crystalline phase, further deformation followed the mechanisms characteristic for the semicrystalline polymer. Interlamellar slip supported by crystallographic chain slip has been identified as the major deformation mechanism in semicrystalline PLLA. It was found that the contribution of crystallographic slip increased notably with the increase in the deformation temperature. The most probable active crystallographic slip systems were (010)[001], (100)[001] or (110)[001] slip systems operating along the chain direction. At high temperatures (Td = 115-140 °C), the αâ†’ß crystal transformation was additionally observed, leading to the formation of a small fraction of ß crystals.

13.
Materials (Basel) ; 14(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34947166

RESUMEN

The synthesis of lightweight yet strong-ductile materials has been an imperative challenge in alloy design. In this study, the CoCrNi-based medium-entropy alloys (MEAs) with added Al and Si were manufactured by vacuum arc melting furnace subsequently followed by cool rolling and anneal process. The mechanical responses of CoCrNiAl0.1Si0.1 MEAs under quasi-static (1 × 10-3 s-1) tensile strength showed that MEAs had an outstanding balance of yield strength, ultimate tensile strength, and elongation. The yield strength, ultimate tensile strength, and elongation were increased from 480 MPa, 900 MPa, and 58% at 298 K to 700 MPa, 1250 MPa, and 72% at 77 K, respectively. Temperature dependencies of the yield strength and strain hardening were investigated to understand the excellent mechanical performance, considering the contribution of lattice distortions, deformation twins, and microbands. Severe lattice distortions were determined to play a predominant role in the temperature-dependent yield stress. The Peierls barrier height increased with decreasing temperature, owing to thermal vibrations causing the effective width of a dislocation core to decrease. Through the thermodynamic formula, the stacking fault energies were calculated to be 14.12 mJ/m2 and 8.32 mJ/m2 at 298 K and 77 K, respectively. In conclusion, the enhanced strength and ductility at cryogenic temperature can be attributed to multiple deformation mechanisms including dislocations, extensive deformation twins, and microbands. The synergistic effect of multiple deformation mechanisms lead to the outstanding mechanical properties of the alloy at room and cryogenic temperature.

14.
Materials (Basel) ; 14(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067916

RESUMEN

The effect of ternary alloying elements (Mo and Ta) on the mechanical and superelastic properties of binary Ti-14Nb alloy fabricated by the mechanical alloying and spark plasma sintering was investigated. The materials were prepared in two ways: (i) by substituting Nb in base Ti-14Nb alloy by 2 at.% of the ternary addition, giving the following compositions: Ti-8Nb-2Mo and Ti-12Nb-2Ta and (ii) by adding 2 at.% of the ternary element to the base alloy. The microstructures of the materials consisted of the equiaxed ß-grains and fine precipitations of TiC. The substitution of Nb by both Mo and Ta did not significantly affect the mechanical properties of the base Ti-14Nb alloy, however, their addition resulted in a decrease of yield strength and increase of plasticity. This was associated with the occurrence of the {332} <113> twinning that was found during the in-situ observations. The elevated concentration of interstitial elements (oxygen and carbon) lead to the occurrence of stress-induced martensitic transformation and twinning mechanisms at lower concentration of ß-stabilizers in comparison to the conventionally fabricated materials. The substitution of Nb by Mo, and Ta caused the slight improvement of the superelastic properties of the base Ti-14Nb alloy, whereas their addition deteriorated the superelasticity.

15.
Materials (Basel) ; 14(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925527

RESUMEN

DZ951G is a novel developed nickel-based directional solidified superalloy with an incipient high melting point and low density. Compared with DZ417G superalloy, DZ951G superalloy has a higher ultimate tensile strength. At intermediate temperatures, the plasticity and strength were both markedly improved, and an obviously anomalous yield behavior could be observed where the yield strength reached its maximum at 760 °C. Below 600 °C, two competitive modes of dislocations shearing γ' particles existed, in which one was the formation of stacking faults and another was a/2<101> dislocations shearing. At intermediate temperatures, a transitional phase between shearing γ' particles and bypassing appeared, and the fracture translated from brittle fracture into ductile fracture. Exceeding 900 °C, bypassing of dislocations was operated under thermal activation. Moreover, short continuous stacking faults still existed at 760 °C. Finally, the various dislocation configurations were rationally illuminated and explained with the intrinsic connection of mechanical properties.

16.
ACS Nano ; 15(5): 8283-8294, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33929826

RESUMEN

Bulk nanopolycrystalline diamond (NPD) samples were deformed plastically within the diamond stability field up to 14 GPa and above 1473 K. Macroscopic differential stress Δσ was determined on the basis of the distortion of the 111 Debye ring using synchrotron X-ray diffraction. Up to ∼5(2)% strain, Debye ring distortion can be satisfactorily described by lattice strain theories as an ellipse. Beyond ∼5(2)% strain, lattice spacing d111 along the Δσ direction becomes saturated and remains constant with further deformation. Transmission electron microscopy on as-synthesized NPD shows well-bonded grain boundaries with no free dislocations within the grains. Deformed samples also contain very few free dislocations, while density of {111} twins increases with plastic strain. Individual grains display complex contrast, exhibiting increasing misorientation with deformation according electron diffraction. Thus, NPD does not deform by dislocation slip, which is the dominated mechanism in conventional polycrystalline diamond composites (PCDCs, grain size >1 µm). The nonelliptical Debye ring distortion is modeled by nucleating 12⟨110⟩ dislocations or their dissociated 16⟨112⟩ partials gliding in the {111} planes to produce deformation twinning. With increasing strain up to ∼5(2)%, strength increases rapidly to ∼20(1) GPa, where d111 reaches saturation. Strength beyond the saturation shows a weak dependence on strain, reaching ∼22(1) GPa at >10% strain. Overall, the strength is ∼2-3 times that of conventional PCDCs. Combined with molecular dynamics simulations and lattice rotation theory, we conclude that the rapid rise of strength with strain is due to defect-source strengthening, whereas further deformation is dominated by nanotwinning and lattice rotation.

17.
Nanomaterials (Basel) ; 11(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668939

RESUMEN

The conventional engineering stress-strain curve could not accurately describe the true stress-strain and local deformability of the necking part of tensile specimens, as it calculates the strain by using the whole gauge length, assuming the tensile specimen was deformed uniformly. In this study, we employed 3D optical measuring digital image correlation (DIC) to systematically measure the full strain field and local strain during the whole tensile process, and calculate the real-time strain and actual flow stress in the necking region of ultrafine-grained (UFG) Ti. The post-necking elongation and strain hardening exponent of the UFG Ti necking part were then measured as 36% and 0.101, slightly smaller than those of the coarse grained Ti (52% and 0.167), suggesting the high plastic deformability in the necking part of the UFG Ti. Finite elemental modeling (FEM) indicates that when necking occurs, strain is concentrated in the necking region. The stress state of the necking part was transformed from uniaxial in the uniform elongation stage to a triaxial stress state. A scanning electron microscopic (SEM) study revealed the shear and ductile fracture, as well as numerous micro shear bands in the UFG Ti, which are controlled by cooperative grain boundary sliding. Our work revealed the large plastic deformability of UFG metals in the necking region under a complex stress state.

18.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572089

RESUMEN

We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.

19.
J Geophys Res Solid Earth ; 125(11): e2020JB019970, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33381362

RESUMEN

A (micro)physical understanding of the transition from frictional sliding to plastic or viscous flow has long been a challenge for earthquake cycle modeling. We have conducted ring-shear deformation experiments on layers of simulated calcite fault gouge under conditions close to the frictional-to-viscous transition previously established in this material. Constant velocity (v) and v-stepping tests were performed, at 550°C, employing slip rates covering almost 6 orders of magnitude (0.001-300 µm/s). Steady-state sliding transitioned from (strong) v-strengthening, flow-like behavior to v-weakening, frictional behavior, at an apparent "critical" velocity (v cr ) of ~0.1 µm/s. Velocity-stepping tests using v < v cr showed "semi-brittle" flow behavior, characterized by high stress sensitivity ("n-value") and a transient response resembling classical frictional deformation. For v ≥ v cr , gouge deformation is localized in a boundary shear band, while for v < v cr , the gouge is well-compacted, displaying a progressively homogeneous structure as the slip rate decreases. Using mechanical data and post-mortem microstructural observations as a basis, we deduced the controlling shear deformation mechanisms and quantitatively reproduced the steady-state shear strength-velocity profile using an existing micromechanical model. The same model also reproduces the observed transient responses to v-steps within both the flow-like and frictional deformation regimes. We suggest that the flow-to-friction transition strongly relies on fault (micro)structure and constitutes a net opening of transient microporosity with increasing shear strain rate at v < v cr , under normal stress-dependent or "semi-brittle" flow conditions. Our findings shed new insights into the microphysics of earthquake rupture nucleation and dynamic propagation in the brittle-to-ductile transition zone.

20.
Polymers (Basel) ; 12(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993078

RESUMEN

Deformation instabilities, such as microbuckling or lamellar fragmentation due to slip localization, play a very important role in the deformation of semicrystalline polymers, although it still not well explored. Such instabilities often appear necessary to modify the deformation path and facilitate strain accommodation in an energy-minimizing manner. In this work, microbuckling instability was investigated using partially oriented, injection-molded (IM) samples of high-density polyethylene, deformed by a plane-strain compression. Deformed samples were probed by SEM, X-ray (small- and wide-angle X-ray scattering: SAXS, WAXS), and differential scanning calorimetry (DSC). It was found that microbuckling instability, followed quickly by the formation of lamellar kinks, occurred in high-density polyethylene (HDPE) at a true strain of about e = 0.3-0.4, mainly in those lamellar stacks which were initially oriented parallel to the compression direction. This phenomenon was observed with scanning electron microscopy, especially in the oriented skin layers of IM specimens, where a chevron morphology resulting from lamellae microbuckling/kinking was evidenced. Macroscopically, this instability manifested as the so-called "second macroscopic yield" in the form of a hump in the true stress-true strain curve. Microbuckling instability can have a profound effect on the subsequent stages of the deformation process, as well as the resulting structure. This is particularly important in deforming well-oriented lamellar structures-e.g., in drawing pre-oriented films of a semicrystalline polymer, a process commonly used in many technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA