Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Behav Ecol ; 34(5): 751-758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744171

RESUMEN

Iridescence is a taxonomically widespread form of structural coloration that produces often intense hues that change with the angle of viewing. Its role as a signal has been investigated in multiple species, but recently, and counter-intuitively, it has been shown that it can function as camouflage. However, the property of iridescence that reduces detectability is, as yet, unclear. As viewing angle changes, iridescent objects change not only in hue but also in intensity, and many iridescent animals are also shiny or glossy; these "specular reflections," both from the target and background, have been implicated in crypsis. Here, we present a field experiment with natural avian predators that separate the relative contributions of color and gloss to the "survival" of iridescent and non-iridescent beetle-like targets. Consistent with previous research, we found that iridescent coloration, and high gloss of the leaves on which targets were placed, enhance survival. However, glossy targets survived less well than matt. We interpret the results in terms of signal-to-noise ratio: specular reflections from the background reduce detectability by increasing visual noise. While a specular reflection from the target attracts attention, a changeable color reduces the signal because, we suggest, normally, the color of an object is a stable feature for detection and identification.

2.
Am Nat ; 202(1): 64-77, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37384762

RESUMEN

AbstractMany species gain antipredator benefits by combining gregarious behavior with warning coloration, yet there is debate over which trait evolves first and which is the secondary adaptive enhancement. Body size can also influence how predators receive aposematic signals and potentially constrain the evolution of gregarious behavior. To our knowledge, the causative links between the evolution of gregariousness, aposematism, and larger body sizes have not been fully resolved. Here, using the most recently resolved butterfly phylogeny and an extensive new dataset of larval traits, we reveal the evolutionary interactions between important traits linked to larval gregariousness. We show that larval gregariousness has arisen many times across butterflies, and aposematism is a likely prerequisite for gregariousness to evolve. We also find that body size may be an important factor for determining the coloration of solitary, but not gregarious, larvae. Additionally, by exposing artificial larvae to wild avian predation, we show that undefended, cryptic larvae are heavily predated when aggregated but benefit from solitariness, whereas the reverse is true for aposematic prey. Our data reinforce the importance of aposematism for gregarious larval survival while identifying new questions about the roles of body size and toxicity in the evolution of grouping behavior.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Animales , Larva , Conducta Predatoria , Tamaño Corporal
3.
Proc Biol Sci ; 290(2001): 20230811, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357867

RESUMEN

Prey animals typically try to avoid being detected and/or advertise to would-be predators that they should be avoided. Both anti-predator strategies primarily rely on colour to succeed, but the specific patterning used is also important. While the role of patterning in camouflage is relatively clear, the design features of aposematic patterns are less well understood. Here, we use a comparative approach to investigate how pattern use varies across a phylogeny of 268 species of cryptic and aposematic butterfly larvae, which also vary in social behaviour. We find that longitudinal stripes are used more frequently by cryptic larvae, and that patterns putatively linked to crypsis are more likely to be used by solitary larvae. By contrast, aposematic larvae are more likely to use horizontal bands and spots, but we find no differences in the use of individual pattern elements between solitary and gregarious aposematic species. However, solitary aposematic larvae are more likely to display multiple pattern elements, whereas those with no pattern are more likely to be gregarious. Our study advances our understanding of how pattern variation, coloration and social behaviour covary across lepidopteran larvae, and highlights new questions about how patterning affects larval detectability and predator responses to aposematic prey.


Asunto(s)
Mariposas Diurnas , Animales , Larva/fisiología , Filogenia , Conducta Social , Conducta Predatoria/fisiología
5.
Ecol Evol ; 11(23): 17557-17567, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938529

RESUMEN

Phenotypic adaptation in terms of background color matching to the local habitat is an important mechanism for survival in prey species. Thus, intraspecific variation in cryptic coloration is expected among localities with dissimilar habitat features (e.g., soil, vegetation). Yellow-bellied toads (Bombina variegata) display a dark dorsal coloration that varies between populations, assumed to convey crypsis. In this study, we explored I) geographic variation in dorsal coloration and II) coloration plasticity in B. variegata from three localities differing in substrate coloration. Using avian visual modeling, we found that the brightness contrasts of the cryptic dorsa were significantly lower on the local substrates than substrates of other localities. In experiments, individuals from one population were able to quickly change the dorsal coloration to match a lighter substrate. We conclude that the environment mediates an adaptation in cryptic dorsal coloration. We suggest further studies to test the mechanisms by which the color change occurs and explore the adaptive potential of coloration plasticity on substrates of varying brightness in B. variegata and other species.

6.
Insects ; 12(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34680672

RESUMEN

On tropical mountains, predation pressure decreases with elevation. Accordingly, one expects an elevational decay in the prevalence of costly defensive traits such as aposematic coloration. Using light-trap catches of Arctiinae moths (353 species, 4466 individuals), assembled along a forested gradient in the megadiverse tropical Andes of southern Ecuador, we show that the incidence of aposematic coloration decreases strongly between 1040 and 2670 m asl. While over 60% of Arctiinae moths were warningly colored at lowest sites, this fraction decreased to less than 20% in montane forest, yet increased slightly again at the highest sites in the very open Purdiaea nutans forest. In parallel, the incidence of hymenopteran mimics and of species that mimic chemically defended beetles decreased with elevation. Hymenopteran mimics accounted for less than 5% of Arctiinae moths at sites above 2100 m, and beetle mimics were essentially lacking at high elevations. These patterns coincide with a change in gross taxonomic composition of Arctiinae ensembles and with an increase in average body size towards higher elevations. Representatives of Euchromiina and Ctenuchina became scarce with altitude, whereas the prevalence of Lithosiinae increased. Our findings suggest that the variable selective pressures along the elevational gradient favor warning coloration primarily at lower sites, whereas cryptic appearance of adult moths dominates in the tropical upper montane forest.

7.
Proc Biol Sci ; 287(1918): 20192537, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31937225

RESUMEN

Most animals need to move, and motion will generally break camouflage. In many instances, most of the visual field of a predator does not fall within a high-resolution area of the retina and so, when an undetected prey moves, that motion will often be in peripheral vision. We investigate how this can be exploited by prey, through different patterns of movement, to reduce the accuracy with which the predator can locate a cryptic prey item when it subsequently orients towards a target. The same logic applies for a prey species trying to localize a predatory threat. Using human participants as surrogate predators, tasked with localizing a target on peripherally viewed computer screens, we quantify the effects of movement (duration and speed) and target pattern. We show that, while motion is certainly detrimental to camouflage, should movement be necessary, some behaviours and surface patterns reduce that cost. Our data indicate that the phenotype that minimizes localization accuracy is unpatterned, having the mean luminance of the background, does not use a startle display prior to movement, and has short (below saccadic latency), fast movements.


Asunto(s)
Conducta Predatoria , Campos Visuales , Animales , Mimetismo Biológico , Color , Humanos , Movimiento (Física) , Movimiento , Percepción Visual
8.
Trends Ecol Evol ; 33(8): 608-618, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29935941

RESUMEN

Camouflage is a key defensive strategy in animals, and it has been used to illustrate and study evolution for 150 years. It is now evident that many camouflage concepts likely also apply to plants, attracting greatly increased attention. Here, we review the hypotheses and evidence for different camouflage strategies used by plants and conceptualise the state of play in plant concealment under a general framework of camouflage theory. In addition, we compare the camouflage strategies used by plants and animals, outline key factors promoting and constraining the evolution of concealment, and highlight the evolutionary and ecological implications of plant camouflage. Ultimately, we show how plant camouflage exhibits many commonalities with animals and how this understudied parallel phenomenon can inform key questions in ecology and evolution.


Asunto(s)
Evolución Biológica , Mimetismo Biológico , Plantas/anatomía & histología , Adaptación Biológica , Animales , Color , Ecosistema
9.
R Soc Open Sci ; 5(2): 171396, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29515858

RESUMEN

Defended prey often use distinctive, conspicuous, colours to advertise their unprofitability to potential predators (aposematism). These warning signals are frequently made up of salient, high contrast, stripes which have been hypothesized to increase the speed and accuracy of predator avoidance learning. Limitations in predator visual acuity, however, mean that these patterns cannot be resolved when viewed from a distance, and adjacent patches of colour will blend together (pattern blending). We investigated how saliency changes at different viewing distances in the toxic and brightly coloured cinnabar moth caterpillar (Tyria jacobaeae). We found that although the caterpillars' orange-and-black stripes are highly salient at close range, when viewed from a distance the colours blend together to match closely those of the background. Cinnabar caterpillars therefore produce a distance-dependent signal combining salient aposematism with targeted background matching camouflage, without necessarily compromising the size or saturation of their aposematic signal.

10.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701559

RESUMEN

Background matching is the most familiar and widespread camouflage strategy: avoiding detection by having a similar colour and pattern to the background. Optimizing background matching is straightforward in a homogeneous environment, or when the habitat has very distinct sub-types and there is divergent selection leading to polymorphism. However, most backgrounds have continuous variation in colour and texture, so what is the best solution? Not all samples of the background are likely to be equally inconspicuous, and laboratory experiments on birds and humans support this view. Theory suggests that the most probable background sample (in the statistical sense), at the size of the prey, would, on average, be the most cryptic. We present an analysis, based on realistic assumptions about low-level vision, that estimates the distribution of background colours and visual textures, and predicts the best camouflage. We present data from a field experiment that tests and supports our predictions, using artificial moth-like targets under bird predation. Additionally, we present analogous data for humans, under tightly controlled viewing conditions, searching for targets on a computer screen. These data show that, in the absence of predator learning, the best single camouflage pattern for heterogeneous backgrounds is the most probable sample.


Asunto(s)
Aves/fisiología , Pigmentación , Percepción Visual , Animales , Color , Ambiente , Humanos , Conducta Predatoria
11.
Philos Trans R Soc Lond B Biol Sci ; 372(1724)2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28533458

RESUMEN

For camouflage to succeed, an individual has to pass undetected, unrecognized or untargeted, and hence it is the processing of visual information that needs to be deceived. Camouflage is therefore an adaptation to the perception and cognitive mechanisms of another animal. Although this has been acknowledged for a long time, there has been no unitary account of the link between visual perception and camouflage. Viewing camouflage as a suite of adaptations to reduce the signal-to-noise ratio provides the necessary common framework. We review the main processes in visual perception and how animal camouflage exploits these. We connect the function of established camouflage mechanisms to the analysis of primitive features, edges, surfaces, characteristic features and objects (a standard hierarchy of processing in vision science). Compared to the commonly used research approach based on established camouflage mechanisms, we argue that our approach based on perceptual processes targeted by camouflage has several important benefits: specifically, it enables the formulation of more precise hypotheses and addresses questions that cannot even be identified when investigating camouflage only through the classic approach based on the patterns themselves. It also promotes a shift from the appearance to the mechanistic function of animal coloration.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.


Asunto(s)
Mimetismo Biológico , Invertebrados/fisiología , Vertebrados/fisiología , Percepción Visual , Animales , Relación Señal-Ruido
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1724)2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28533466

RESUMEN

While one has evolved and the other been consciously created, animal and military camouflage are expected to show many similar design principles. Using a unique database of calibrated photographs of camouflage uniform patterns, processed using texture and colour analysis methods from computer vision, we show that the parallels with biology are deeper than design for effective concealment. Using two case studies we show that, like many animal colour patterns, military camouflage can serve multiple functions. Following the dissolution of the Warsaw Pact, countries that became more Western-facing in political terms converged on NATO patterns in camouflage texture and colour. Following the break-up of the former Yugoslavia, the resulting states diverged in design, becoming more similar to neighbouring countries than the ancestral design. None of these insights would have been obtained using extant military approaches to camouflage design, which focus solely on concealment. Moreover, our computational techniques for quantifying pattern offer new tools for comparative biologists studying animal coloration.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.


Asunto(s)
Vestuario , Color , Evolución Cultural , Percepción Visual , Personal Militar/psicología
13.
Anim Behav ; 123: 349-353, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28123185

RESUMEN

The formation of groups is a common strategy to avoid predation in animals, and recent research has indicated that there may be interactions between some forms of defensive coloration, notably high-contrast 'dazzle camouflage', and one of the proposed benefits of grouping: the confusion effect. However, research into the benefits of dazzle camouflage has largely used targets moving with constant speed. This simplification may not generalize well to real animal systems, where a number of factors influence both within- and between-individual variation in speed. Departure from the speed of your neighbours in a group may be predicted to undermine the confusion effect. This is because individual speed may become a parameter through which the observer can individuate otherwise similar targets: an 'oddity effect'. However, dazzle camouflage patterns are thought to interfere with predator perception of speed and trajectory. The current experiment investigated the possibility that such patterns could ameliorate the oddity effect caused by within-group differences in prey speed. We found that variation in speed increased the ease with which participants could track targets in all conditions. However, we found no evidence that motion dazzle camouflage patterns reduced oddity effects based on this variation in speed, a result that may be informative about the mechanisms behind this form of defensive coloration. In addition, results from those conditions most similar to those of published studies replicated previous results, indicating that targets with stripes parallel to the direction of motion are harder to track, and that this pattern interacts with the confusion effect to a greater degree than background matching or orthogonal-to-motion striped patterns.

14.
Proc Natl Acad Sci U S A ; 113(46): 13093-13097, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807134

RESUMEN

Countershading, the widespread tendency of animals to be darker on the side that receives strongest illumination, has classically been explained as an adaptation for camouflage: obliterating cues to 3D shape and enhancing background matching. However, there have only been two quantitative tests of whether the patterns observed in different species match the optimal shading to obliterate 3D cues, and no tests of whether optimal countershading actually improves concealment or survival. We use a mathematical model of the light field to predict the optimal countershading for concealment that is specific to the light environment and then test this prediction with correspondingly patterned model "caterpillars" exposed to avian predation in the field. We show that the optimal countershading is strongly illumination-dependent. A relatively sharp transition in surface patterning from dark to light is only optimal under direct solar illumination; if there is diffuse illumination from cloudy skies or shade, the pattern provides no advantage over homogeneous background-matching coloration. Conversely, a smoother gradation between dark and light is optimal under cloudy skies or shade. The demonstration of these illumination-dependent effects of different countershading patterns on predation risk strongly supports the comparative evidence showing that the type of countershading varies with light environment.


Asunto(s)
Mimetismo Biológico , Aves/fisiología , Luz , Conducta Predatoria , Animales , Color , Larva , Pigmentación , Tiempo (Meteorología)
15.
Curr Biol ; 26(18): 2456-2462, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27641767

RESUMEN

Countershading was one of the first proposed mechanisms of camouflage [1, 2]. A dark dorsum and light ventrum counteract the gradient created by illumination from above, obliterating cues to 3D shape [3-6]. Because the optimal countershading varies strongly with light environment [7-9], pigmentation patterns give clues to an animal's habitat. Indeed, comparative evidence from ungulates [9] shows that interspecific variation in countershading matches predictions: in open habitats, where direct overhead sunshine dominates, a sharp dark-light color transition high up the body is evident; in closed habitats (e.g., under forest canopy), diffuse illumination dominates and a smoother dorsoventral gradation is found. We can apply this approach to extinct animals in which the preservation of fossil melanin allows reconstruction of coloration [10-15]. Here we present a study of an exceptionally well-preserved specimen of Psittacosaurus sp. from the Chinese Jehol biota [16, 17]. This Psittacosaurus was countershaded [16] with a light underbelly and tail, whereas the chest was more pigmented. Other patterns resemble disruptive camouflage, whereas the chin and jugal bosses on the face appear dark. We projected the color patterns onto an anatomically accurate life-size model in order to assess their function experimentally. The patterns are compared to the predicted optimal countershading from the measured radiance patterns generated on an identical uniform gray model in direct versus diffuse illumination. These studies suggest that Psittacosaurus sp. inhabited a closed habitat such as a forest with a relatively dense canopy. VIDEO ABSTRACT.


Asunto(s)
Mimetismo Biológico , Dinosaurios/fisiología , Fósiles , Pigmentación , Animales , China , Ecosistema
16.
Behav Ecol ; 27(5): 1547-1551, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27656087

RESUMEN

The influence of coloration on the ecology and evolution of moving animals in groups is poorly understood. Animals in groups benefit from the "confusion effect," where predator attack success is reduced with increasing group size or density. This is thought to be due to a sensory bottleneck: an increase in the difficulty of tracking one object among many. Motion dazzle camouflage has been hypothesized to disrupt accurate perception of the trajectory or speed of an object or animal. The current study investigates the suggestion that dazzle camouflage may enhance the confusion effect. Utilizing a computer game style experiment with human predators, we found that when moving in groups, targets with stripes parallel to the targets' direction of motion interact with the confusion effect to a greater degree, and are harder to track, than those with more conventional background matching patterns. The findings represent empirical evidence that some high-contrast patterns may benefit animals in groups. The results also highlight the possibility that orientation and turning may be more relevant in the mechanisms of dazzle camouflage than previously recognized.

17.
Biol Lett ; 12(8)2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27484645

RESUMEN

Aposematic signals are often characterized by high conspicuousness. Larger and brighter signals reinforce avoidance learning, distinguish defended from palatable prey and are more easily memorized by predators. Conspicuous signalling, however, has costs: encounter rates with naive, specialized or nutritionally stressed predators are likely to increase. It has been suggested that intermediate levels of aposematic conspicuousness can evolve to balance deterrence and detectability, especially for moderately defended species. The effectiveness of such signals, however, has not yet been experimentally tested under field conditions. We used dough caterpillar-like baits to test whether reduced levels of aposematic conspicuousness can have survival benefits when predated by wild birds in natural conditions. Our results suggest that, when controlling for the number and intensity of internal contrast boundaries (stripes), a reduced-conspicuousness aposematic pattern can have a survival advantage over more conspicuous signals, as well as cryptic colours. Furthermore, we find a survival benefit from the addition of internal contrast for both high and low levels of conspicuousness. This adds ecological validity to evolutionary models of aposematic saliency and the evolution of honest signalling.


Asunto(s)
Mimetismo Biológico , Animales , Reacción de Prevención , Evolución Biológica , Aves , Color , Conducta Predatoria
18.
R Soc Open Sci ; 3(7): 160180, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27493775

RESUMEN

'Motion dazzle camouflage' is the name for the putative effects of highly conspicuous, often repetitive or complex, patterns on parameters important in prey capture, such as the perception of speed, direction and identity. Research into motion dazzle camouflage is increasing our understanding of the interactions between visual tracking, the confusion effect and defensive coloration. However, there is a paucity of research into the effects of contrast on motion dazzle camouflage: is maximal contrast a prerequisite for effectiveness? If not, this has important implications for our recognition of the phenotype and understanding of the function and mechanisms of potential motion dazzle camouflage patterns. Here we tested human participants' ability to track one moving target among many identical distractors with surface patterns designed to test the influence of these factors. In line with previous evidence, we found that targets with stripes parallel to the object direction of motion were hardest to track. However, reduction in contrast did not significantly influence this result. This finding may bring into question the utility of current definitions of motion dazzle camouflage, and means that some animal patterns, such as aposematic or mimetic stripes, may have previously unrecognized multiple functions.

19.
Plant Signal Behav ; 10(12): e1040968, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26786012

RESUMEN

Gloger's rule posits that darker birds are found more often in humid environments than in arid ones, especially in the tropics. Accordingly, desert-inhabiting animals tend to be light-colored. This rule is also true for certain mammalian groups, including humans. Gloger's rule is manifested at 2 levels: (1) at the species level (different populations of the same species have different pigmentation at different latitudes), and (2) at the species assembly level (different taxa at a certain geography have different pigmentation than other taxa found at different habitats or latitudes). Concerning plants, Gloger's rule was first proposed to operate in many plant species growing in sand dunes, sandy shores and in deserts, because of being white, whitish, or silver colored, based on white trichomes, because of sand grains and clay particles glued to sticky glandular trichomes, or because of light-colored waxes. Recently, Gloger's rule was shown to also be true at the intraspecific level in relation to protection of anthers from UV irradiation. While Gloger's rule is true in certain plant taxa and ecologies, there are others where "anti-Gloger" coloration patterns exist. In some of these the selective agents are known and in others they are not. I present both Gloger and "anti-Gloger" cases and argue that this largely neglected aspect of plant biology deserves much more research attention.


Asunto(s)
Ecosistema , Modelos Biológicos , Plantas/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA