Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 18(1): 2217030, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37232366

RESUMEN

Rust infection results in stress volatile emissions, but due to the complexity of host-pathogen interaction and variations in innate defense and capacity to induce defense, biochemical responses can vary among host species. Fungal-dependent modifications in volatile emissions have been well documented in numerous host species, but how emission responses vary among host species is poorly understood. Our recent experiments demonstrated that the obligate biotrophic crown rust fungus (P. coronata) differently activated primary and secondary metabolic pathways in its primary host Avena sativa and alternate host Rhamnus frangula. In A. sativa, emissions of methyl jasmonate, short-chained lipoxygenase products, long-chained saturated fatty acid derivatives, mono- and sesquiterpenes, carotenoid breakdown products, and benzenoids were initially elicited in an infection severity-dependent manner, but the emissions decreased under severe infection and photosynthesis was almost completely inhibited. In R. frangula, infection resulted in low-level induction of stress volatile emissions, but surprisingly, in enhanced constitutive isoprene emissions, and even severely-infected leaves maintained a certain photosynthesis rate. Thus, the same pathogen elicited a much stronger response in the primary than in the alternate host. We argue that future work should focus on resolving mechanisms of different fungal tolerance and resilience among primary and secondary hosts.


Asunto(s)
Basidiomycota , Micosis , Compuestos Orgánicos Volátiles , Estrés Fisiológico , Fotosíntesis , Redes y Vías Metabólicas , Hojas de la Planta/metabolismo , Micosis/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
2.
Mol Plant Microbe Interact ; 35(7): 554-566, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34726476

RESUMEN

In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity. Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands such as bacterial flagellin (flg22 epitope) and elongation factor Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components; namely, the PRR-associated kinases BAK1 and BIK1 and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a preexposure to immunogenic patterns. In good accordance, plants challenged with nonpathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic or abiotic stress cross-tolerance in plants conferred by PRRs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Epítopos , Leucina , Péptidos , Inmunidad de la Planta/fisiología , Plantas , Proteínas Serina-Treonina Quinasas , Receptores de Reconocimiento de Patrones/genética , Tolerancia a la Sal/genética
3.
Mol Plant Microbe Interact ; 34(12): 1346-1349, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34505817

RESUMEN

The first of three International Society for Molecular Plant-Microbe Interactions (IS-MPMI) eSymposia was convened on 12 and 13 July 2021, with the theme "Molecular Mechanism & Structure-Zooming in on Plant Immunity". Hosted by Jian-Min Zhou (Beijing, China) and Jane Parker (Cologne, Germany), the eSymposium centered on "Top 10 Unanswered Questions in MPMI" number five: Does effector-triggered immunity (ETI) potentiate and restore pattern-triggered immunity (PTI)-or is there really a binary distinction between ETI and PTI? Since the previous International Congress of IS-MPMI in 2019, substantial progress has been made in untangling the complex signaling underlying plant immunity, including a greater understanding of the structure and function of key proteins. A clear need emerged for the MPMI community to come together virtually to share new knowledge around plant immunity. Over the course of two synchronous, half days of programming, participants from 32 countries attended two plenary sessions with engaging panel discussions and networked through interactive hours and poster breakout rooms. In this report, we summarize the concerted effort by multiple laboratories to study the molecular mechanisms underlying ETI and PTI, highlighting the essential role of plant resistosomes in the formation of calcium channels during an immune response. We conclude our report by forming new questions about how overlapping signaling mechanisms are controlled.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Inmunidad de la Planta , Plantas , China , Enfermedades de las Plantas , Transducción de Señal
4.
Mol Plant Microbe Interact ; 34(7): 733-745, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33555219

RESUMEN

WRKY transcription factors have been implicated in plant response to pathogens but how WRKY-mediated networks are organized and operate to produce appropriate transcriptional outputs remains largely unclear. Here, we identify a member of the WRKY family from pepper (Capsicum annuum), CaWRKY28, that physically interacts with CaWRKY40, a positive regulator of pepper immunity and thermotolerance. We confirmed CaWRKY28-CaWRKY40 interaction by coimmunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. Our findings supported the idea that CaWRKY28 is a nuclear protein that acts as positive regulator in pepper responses to infection by the pathogenic bacterium Ralstonia solanacearum. It performs its function not by directly modulating the W-box containing immunity-related genes but by promoting CaWRKY40 via physical interaction to bind and activate its immunity-related target genes, including CaPR1, CaNPR1, CaDEF1, and CaABR1, but not its thermotolerance-related target gene, CaHSP24. All of these data indicate that CaWRKY28 interacts with and potentiates CaWRKY40 in regulating immunity against R. solanacearum infection but not thermotolerance. Importantly, we discovered that CaWRKY28 Cys249, shared by CaWRKY28 and its orthologs probably only in the family Solanaceae, is crucial for the CaWRKY28-CaWRKY40 interaction. These results highlight how CaWRKY28 associates with CaWRKY40 during the establishment of WRKY networks, and how CaWRKY40 achieves its functional specificity during pepper responses to R. solanacearum infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Capsicum , Ralstonia solanacearum , Capsicum/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/metabolismo
5.
Mol Plant Microbe Interact ; 34(6): 587-601, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33512246

RESUMEN

Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Inmunidad de la Planta , Inmunidad Innata , Plantas , Receptores de Reconocimiento de Patrones
6.
Mol Plant Microbe Interact ; 34(1): 75-87, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33006531

RESUMEN

Plants require interaction between signaling pathways to differentiate and integrate stress responses and deploy appropriate defenses. The hormones ethylene, salicylic acid (SA), and jasmonic acid (JA) are important regulators of plant defenses. Numerous interactions between these signaling pathways are the cornerstone of robust plant immunity. Additionally, during the early response to pathogens, reactive oxygen species (ROS) act as signaling molecules. Here, we examined the extent of signal interaction in the early stages of Botrytis cinerea infection. To enable a comparison between B. cinerea infection with ROS signaling, we subjected plants to ozone treatment, which stimulates an apoplastic ROS burst. We used a collection of single, double, and triple signaling mutants defective in hormone signaling and biosynthesis and subjected them to B. cinerea infection and ozone treatment at different timepoints. We examined lesion size, cell death, and gene expression (both quantitatively and spatially). The two treatments shared many similarities, especially in JA-insensitive mutants, which were sensitive to both treatments. Unexpectedly, a B. cinerea-susceptible JA-insensitive mutant (coi1), became tolerant when both SA biosynthesis and signaling was impaired (coi1 npr1 sid2), demonstrating that JA responses may be under the control of SA. Extensive marker gene analysis indicated JA as the main regulator of both B. cinerea and ozone defenses. In addition, we identified the transcription factor SR1 as a crucial regulator of PLANT DEFENSIN expression and cell-death regulation, which contributes to resistance to B. cinerea. Overall, our work further defines the context of ROS in plant defense signaling.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Arabidopsis , Botrytis , Muerte Celular , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética
7.
Mol Plant Microbe Interact ; 33(7): 911-920, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32240064

RESUMEN

A characteristic feature of a plant immune response is the increase of the cytosolic calcium (Ca2+) concentration following infection, which results in the downstream activation of immune response regulators. The bryophyte Physcomitrella patens has been shown to mount an immune response when exposed to bacteria, fungi, or chitin elicitation, in a manner similar to the one observed in Arabidopsis thaliana. Nevertheless, whether the response of P. patens to microorganism exposure is Ca2+ mediated is currently unknown. Here, we show that P. patens plants treated with chitin oligosaccharides exhibit Ca2+ oscillations, and that a calcium ionophore can stimulate the expression of defense-related genes. Treatment with chitin oligosaccharides also results in an inhibition of growth, which can be explained by the depolymerization of the apical actin cytoskeleton of tip growing cells. These results suggest that chitin-triggered calcium oscillations are conserved and were likely present in the common ancestor of bryophytes and vascular plants.


Asunto(s)
Bryopsida/inmunología , Calcio/farmacología , Quitina/farmacología , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología
8.
Mol Plant Microbe Interact ; 33(7): 932-944, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32267815

RESUMEN

The Arabidopsis resistance protein RPS5 is activated by proteolytic cleavage of the protein kinase PBS1 by the Pseudomonas syringae effector protease AvrPphB. We have previously shown that replacing seven amino acids at the cleavage site of PBS1 with a motif cleaved by the NIa protease of turnip mosaic virus (TuMV) enables RPS5 activation upon TuMV infection. However, this engineered resistance conferred a trailing necrosis phenotype indicative of a cell-death response too slow to contain the virus. We theorized this could result from a positional mismatch within the cell between PBS1TuMV, RPS5, and the NIa protease. To test this, we relocalized PBS1TuMV and RPS5 to cellular sites of NIa accumulation. These experiments revealed that relocation of RPS5 away from the plasma membrane compromised RPS5-dependent cell death in Nicotiana benthamiana, even though PBS1 was efficiently cleaved. As an alternative approach, we tested whether overexpression of plasma membrane-localized PBS1TuMV could enhance RPS5 activation by TuMV. Significantly, overexpressing the PBS1TuMV decoy protein conferred complete resistance to TuMV when delivered by either agrobacterium or by aphid transmission, showing that RPS5-mediated defense responses are effective against bacterial and viral pathogens. Lastly, we have now extended this PBS1 decoy approach to soybean by modifying a soybean PBS1 ortholog to be cleaved by the NIa protease of soybean mosaic virus (SMV). Transgenic overexpression of this soybean PBS1 decoy conferred immunity to SMV, demonstrating that we can use endogenous PBS1 proteins in crop plants to engineer economically relevant disease resistant traits.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/virología , Resistencia a la Enfermedad/genética , Glycine max/virología , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Proteínas Serina-Treonina Quinasas/genética , Animales , Arabidopsis/genética , Plantas Modificadas Genéticamente/virología , Glycine max/genética
9.
Mol Plant Microbe Interact ; 33(7): 982-995, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32223579

RESUMEN

The family Sclerotiniaceae includes important phytopathogens, such as Botrytis cinerea and Sclerotinia sclerotiorum, that activate plant immune responses to facilitate infection propagation. The mechanisms of plant resistance to these necrotrophic pathogens are still poorly understood. To discover mechanisms of resistance, we used the Ciborinia camelliae (Sclerotiniaceae)-Camellia spp. pathosystem. This fungus induces rapid infection of the blooms of susceptible cultivar Nicky Crisp (Camellia japonica × Camellia pitardii var. pitardii), while Camellia lutchuensis is highly resistant. Genome-wide analysis of gene expression in resistant plants revealed fast modulation of host transcriptional activity 6 h after ascospore inoculation. Ascospores induced the same defense pathways in the susceptible Camellia cultivar but much delayed and coinciding with disease development. We next tested the hypothesis that differences in defense timing influences disease outcome. We induced early defense in the susceptible cultivar using methyl jasmonate and this strongly reduced disease development. Conversely, delaying the response in the resistant species, by infecting it with actively growing fungal mycelium, increased susceptibility. The same plant defense pathways, therefore, contribute to both resistance and susceptibility, suggesting that defense timing is a critical factor in plant health, and resistance against necrotrophic pathogens may occur during the initial biotrophy-like stages.


Asunto(s)
Ascomicetos/patogenicidad , Camellia/genética , Resistencia a la Enfermedad/genética , Flores/microbiología , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Acetatos , Camellia/microbiología , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas/microbiología , Factores de Tiempo
10.
Mol Plant Microbe Interact ; 33(1): 66-77, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31347973

RESUMEN

Plum pox virus (PPV) is the causative agent of sharka, a devastating disease of stone fruits including peaches, apricots, and plums. PPV infection levels and associated disease symptoms can vary greatly, depending upon the virus strain, host species, or cultivar as well as developmental age of the infected tissues. For example, peaches often exhibit mild symptoms in leaves and fruit while European plums typically display severe chlorotic rings. Systemic virus spread into all host tissues occurs via the phloem, a process that is poorly understood in perennial plant species that undergo a period of dormancy and must annually renew phloem tissues. Currently, little is known about how phloem tissues respond to virus infection. Here, we used translating ribosome affinity purification followed by RNA sequencing to identify phloem- and nonphloem-specific gene responses to PPV infection during leaf development in European plum (Prunus domestica L.). Results showed that, during secondary leaf morphogenesis (4- and 6-week-old leaves), the phloem had a disproportionate response to PPV infection with two- to sixfold more differentially expressed genes (DEGs) in phloem than nonphloem tissues, despite similar levels of viral transcripts. In contrast, in mature 12-week-old leaves, virus transcript levels dropped significantly in phloem tissues but not in nonphloem tissues. This drop in virus transcripts correlated with an 18-fold drop in phloem-specific DEGs. Furthermore, genes associated with defense responses including RNA silencing were spatially coordinated in response to PPV accumulation and were specifically induced in phloem tissues at 4 to 6 weeks. Combined, these findings highlight the temporal and spatial dynamics of leaf tissue responses to virus infection and reveal the importance of phloem responses within a perennial host.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Floema , Virus Eruptivo de la Ciruela , Prunus domestica , Resistencia a la Enfermedad/genética , Floema/virología , Hojas de la Planta/virología , Prunus domestica/virología
11.
Mol Plant Microbe Interact ; 33(3): 539-552, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31790346

RESUMEN

Citrus huanglongbing (HLB), caused by phloem-limited 'Candidatus Liberibacter' bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from 'Ca. Liberibacter' spp. We identified the core genome from multiple 'Ca. Liberibacter' pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.


Asunto(s)
Citrus/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Rhizobiaceae/patogenicidad , Citrus/microbiología , Hibridación Genómica Comparativa , Floema , Enfermedades de las Plantas/microbiología
12.
Mol Plant Microbe Interact ; 33(4): 693-703, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31876224

RESUMEN

ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) are sequence-related lipase-like proteins that function as a complex to regulate defense responses in Arabidopsis by both salicylic acid-dependent and independent pathways. Here, we describe a gain-of-function mutation in PAD4 (S135F) that enhances resistance and cell death in response to infection by the powdery mildew pathogen Golovinomyces cichoracearum. The mutant PAD4 protein accumulates to wild-type levels in Arabidopsis cells, thus these phenotypes are unlikely to be due to PAD4 over accumulation. The phenotypes are similar to loss-of-function mutations in the protein kinase EDR1 (Enhanced Disease Resistance1), and previous work has shown that loss of PAD4 or EDS1 suppresses edr1-mediated phenotypes, placing these proteins downstream of EDR1. Here, we show that EDR1 directly associates with EDS1 and PAD4 and inhibits their interaction in yeast and plant cells. We propose a model whereby EDR1 negatively regulates defense responses by interfering with the heteromeric association of EDS1 and PAD4. Our data indicate that the S135F mutation likely alters an EDS1-independent function of PAD4, potentially shedding light on a yet-unknown PAD4 signaling function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hidrolasas de Éster Carboxílico , Muerte Celular , Proteínas de Unión al ADN , Resistencia a la Enfermedad , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Muerte Celular/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Ácido Salicílico/metabolismo
13.
Mol Plant Microbe Interact ; 33(3): 433-443, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31821091

RESUMEN

In Arabidopsis, both pathogen invasion and benzothiadiazole (BTH) treatment activate the nonexpresser of pathogenesis-related genes 1 (NPR1)-mediated systemic acquired resistance, which provides broad-spectrum disease resistance to secondary pathogen infection. However, the BTH-induced resistance in Triticeae crops of wheat and barley seems to be accomplished through an NPR1-independent pathway. In the current investigation, we applied transcriptome analysis on barley transgenic lines overexpressing wheat wNPR1 (wNPR1-OE) and knocking down barley HvNPR1 (HvNPR1-Kd) to reveal the role of NPR1 during the BTH-induced resistance. Most of the previously designated barley chemical-induced (BCI) genes were upregulated in an NPR1-independent manner, whereas the expression levels of several pathogenesis-related (PR) genes were elevated upon BTH treatment only in wNPR1-OE. Two barley WRKY transcription factors, HvWRKY6 and HvWRKY70, were predicted and further validated as key regulators shared by the BTH-induced resistance and the NPR1-mediated acquired resistance. Wheat transgenic lines overexpressing HvWRKY6 and HvWRKY70 showed different degrees of enhanced resistance to Puccinia striiformis f. sp. tritici pathotype CYR32 and Blumeria graminis f. sp. tritici pathotype E20. In conclusion, the transcriptional changes of BTH-induced resistance in barley were initially profiled, and the identified key regulators would be valuable resources for the genetic improvement of broad-spectrum disease resistance in wheat.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Tiadiazoles/farmacología , Factores de Transcripción/genética , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Transcriptoma
14.
Mol Plant Microbe Interact ; 33(2): 223-234, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31544656

RESUMEN

Streptomycetes are soil-dwelling, filamentous actinobacteria and represent a prominent bacterial clade inside the plant root microbiota. The ability of streptomycetes to produce a broad spectrum of antifungal metabolites suggests that these bacteria could be used to manage plant diseases. Here, we describe the identification of a soil Streptomyces strain named AgN23 which strongly activates a large array of defense responses when applied on Arabidopsis thaliana leaves. AgN23 increased the biosynthesis of salicylic acid, leading to the development of salicylic acid induction deficient 2 (SID2)-dependent necrotic lesions. Size exclusion fractionation of plant elicitors secreted by AgN23 showed that these signals are tethered into high molecular weight complexes. AgN23 mycelium was able to colonize the leaf surface, leading to plant resistance against Alternaria brassicicola infection in wild-type Arabidopsis plants. AgN23-induced resistance was found partially compromised in salicylate, jasmonate, and ethylene mutants. Our data show that Streptomyces soil bacteria can develop at the surface of plant leaves to induce defense responses and protection against foliar fungal pathogens, extending their potential use to manage plant diseases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Micosis , Streptomyces , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas , Mutación , Ácido Salicílico/metabolismo , Microbiología del Suelo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
15.
Mol Plant Microbe Interact ; 33(2): 235-246, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31721651

RESUMEN

Herbaspirillum rubrisubalbicans is the causal agent of red stripe disease (RSD) and mottle stripe disease of sorghum and sugarcane, respectively. In all, 63 genotypes of Sorghum bicolor were inoculated with H. rubrisubalbicans, with 59 showing RSD symptoms. Quantitative trait loci (QTL) analysis in a recombinant inbred line (RIL) population identified several QTL associated with variation in resistance to RSD. RNA sequencing analysis identified a number of genes whose transcript levels were differentially regulated during H. rubrisubalbicans infection. Among those genes that responded to H. rubrisubalbicans inoculation were many involved in plant-pathogen interactions such as leucine-rich repeat receptors, mitogen-activated protein kinase 1, calcium-binding proteins, transcriptional factors (ethylene-responsive element binding factor), and callose synthase. Pretreatment of sorghum leaves with the pathogen-associated molecular pattern (PAMP) molecules flg22 and chitooctaose provided protection against subsequent challenge with the pathogen, suggesting that PAMP-triggered immunity plays an important role in the sorghum immunity response. These data present baseline information for the use of the genetically tractable H. rubrisubalbicans-sorghum pathosystem for the study of innate immunity and disease resistance in this important grain and bioenergy crop. Information gained from the use of this system is likely to be informative for other monocots, including those more intractable for experimental study (e.g., sugarcane).


Asunto(s)
Resistencia a la Enfermedad , Herbaspirillum , Enfermedades de las Plantas , Sorghum , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Herbaspirillum/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Sorghum/genética , Sorghum/inmunología , Sorghum/microbiología
16.
Mol Plant Microbe Interact ; 32(9): 1095-1109, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31365325

RESUMEN

Verticillium longisporum is a vascular fungal pathogen leading to severe crop loss, particular in oilseed rape. Transcription factors (TF) are highly suited for genetic engineering of pathogen-resistant crops, as they control sets of functionally associated genes. Applying the AtTORF-Ex (Arabidopsis thaliana transcription factor open reading frame expression) collection, a simple and robust screen of TF-overexpressing plants was established displaying reduced fungal colonization. Distinct members of the large ethylene response factor (ERF) family, namely ERF96 and the six highly related subgroup IXb members ERF102 to ERF107, were identified. Whereas overexpression of these ERF significantly reduces fungal propagation, single loss-of-function approaches did not reveal altered susceptibility. Hence, this gain-of-function approach is particularly suited to identify redundant family members. Expression analyses disclosed distinct ERF gene activation patterns in roots and leaves, suggesting functional differences. Transcriptome studies performed on chemically induced ERF106 expression revealed an enrichment of genes involved in the biosynthesis of antimicrobial indole glucosinolates (IG), such as CYP81F2 (CYTOCHROME P450-MONOOXYGENASE 81F2), which is directly regulated by IXb-ERF via two GCC-like cis-elements. The impact of IG in restricting fungal propagation was further supported as the cyp81f2 mutant displayed significantly enhanced susceptibility. Taken together, this proof-of-concept approach provides a novel strategy to identify candidate TF that are valuable genetic resources for engineering or breeding pathogen-resistant crop plants.


Asunto(s)
Cruzamiento , Resistencia a la Enfermedad , Ingeniería Genética , Factores de Transcripción , Verticillium , Brassica rapa/microbiología , Resistencia a la Enfermedad/genética , Mutación con Ganancia de Función , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética/métodos , Factores de Transcripción/genética
17.
Front Microbiol ; 10: 1241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214156

RESUMEN

Heterodera avenae mainly infects cereal crops and causes severe economic losses. Many studies have shown that parasitic nematodes can secrete effector proteins to suppress plant immune responses and then promote parasitism. In this study, we showed that HaGland5, a novel effector of H. avenae, was exclusively expressed in dorsal esophageal gland cell of nematode, and up-regulated in the early parasitic stage. Transgenic Arabidopsis thaliana lines expressing HaGland5 were significantly more susceptible to H. schachtii than wild-type control plants. Conversely, silencing of HaGland5 through barley stripe mosaic virus-medicated host-induced gene silencing technique substantially reduced the infection of H. avenae in wheat. Moreover, HaGland5 could suppress the plant defense responses, including the repression of plant defense-related genes, reducing deposition of cell wall callose and the burst of reactive oxygen species. Mass spectrometry, co-immunoprecipitation, and firefly luciferase complementation imaging assays confirmed that HaGland5 interacted specifically with Arabidopsis pyruvate dehydrogenase subunit (AtEMB3003).

18.
Mol Plant Microbe Interact ; 32(8): 1001-1012, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30938576

RESUMEN

Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.


Asunto(s)
Ascomicetos , Brassica napus , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Transcriptoma , Ascomicetos/fisiología , Brassica napus/genética , Brassica napus/inmunología , Brassica napus/microbiología , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología
19.
Mol Plant Microbe Interact ; 32(9): 1229-1242, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31012804

RESUMEN

The plasma membrane (PM) is at the interface of plant-pathogen interactions and, thus, many bacterial type-III effector (T3E) proteins target membrane-associated processes to interfere with immunity. The Pseudomonas syringae T3E HopZ1a is a host cell PM-localized effector protein that has several immunity-associated host targets but also activates effector-triggered immunity in resistant backgrounds. Although HopZ1a has been shown to interfere with early defense signaling at the PM, no dedicated PM-associated HopZ1a target protein has been identified until now. Here, we show that HopZ1a interacts with the PM-associated remorin protein NbREM4 from Nicotiana benthamiana in several independent assays. NbREM4 relocalizes to membrane nanodomains after treatment with the bacterial elicitor flg22 and transient overexpression of NbREM4 in N. benthamiana induces the expression of a subset of defense-related genes. We can further show that NbREM4 interacts with the immune-related receptor-like cytoplasmic kinase avrPphB-susceptible 1 (PBS1) and is phosphorylated by PBS1 on several residues in vitro. Thus, we conclude that NbREM4 is associated with early defense signaling at the PM. The possible relevance of the HopZ1a-NbREM4 interaction for HopZ1a virulence and avirulence functions is discussed.Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , Interacciones Huésped-Patógeno , Fosfoproteínas , Proteínas de Plantas , Proteínas Serina-Treonina Quinasas , Pseudomonas syringae , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Nicotiana/enzimología , Nicotiana/microbiología
20.
Planta ; 248(6): 1383-1392, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30120551

RESUMEN

MAIN CONCLUSION: This study demonstrates that the application of the PGPB strain, Kosakonia radicincitans enhances a plant's resistance against phloem-feeding and chewing insects in Arabidopsis thaliana. The plant growth-promoting bacterial strain K. radicincitans DSM 16656 applied to A. thaliana reduced the number of phloem-feeding insects of both the specialist Brevicoryne brassicae and the generalist Myzus persicae. While weight gain of the generalist chewing insect Spodoptera exigua was reduced by 30% on A. thaliana plants treated with K. radicincitans, growth of the specialist caterpillar Pieris brassicae was not affected when compared with caterpillars from control plants. Since generalist and specialist chewing insects responded differentially to PGPB application, the implication of signaling pathways in PGPB mediated changes in plant defense was studied using two signaling pathway mutants impaired in their salicylic acid (npr1-1 mutant) or jasmonic acid (coi1-1 mutant) pathway. We found that the jasmonic acid pathway is relevant for upregulation of aliphatic glucosinolates and suppression of the chewing generalist S. exigua larval growth. Chewing from generalist P. brassicae increased glucosinolate content in A. thaliana leaves mediated via both signaling pathways. However, only in the npr1-1 mutant, which contains the highest aliphatic glucosinolate content, the P. brassicae induced further enrichment of glucosinolates, resulting in a reduction of larval growth. Effects of K. radicincitans on plant resistance could not be explained by changes in glucosinolate contents or composition. Our results demonstrate the distinct role played by K. radicincitans in suppressing insect performance in A. thaliana.


Asunto(s)
Áfidos/microbiología , Arabidopsis/microbiología , Resistencia a la Enfermedad , Enterobacteriaceae/fisiología , Enfermedades de las Plantas/microbiología , Spodoptera/microbiología , Animales , Áfidos/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Glucosinolatos/metabolismo , Herbivoria , Larva , Mutación , Floema/crecimiento & desarrollo , Floema/inmunología , Floema/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Transducción de Señal , Spodoptera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA