Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(25): e2310180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38342676

RESUMEN

Knee replacement surgery confronts challenges including patient dissatisfaction and the necessity for secondary procedures. A key requirement lies in dual-modal measurement of force and temperature of artificial joints during postoperative monitoring. Here, a novel non-toxic near-infrared (NIR) phosphor Sr3Sn2O7:Nd, Yb, is designed to realize the dual-modal measurement. The strategy is to entail phonon-assisted upconversion luminescence (UCL) and trap-controlled mechanoluminescence (ML) in a single phosphor well within the NIR biological transmission window. The phosphor is embedded in medical bone cement forming a smart joint in total knee replacements illustrated as a proof-of-concept. The sensing device can be charged in vitro by a commercial X-ray source with a safe dose rate for ML, and excited by a low power 980 nm laser for UCL. It attains impressive force and temperature sensing capabilities, exhibiting a force resolution of 0.5% per 10 N, force detection threshold of 15 N, and a relative temperature sensitive of up to 1.3% K-1 at 309 K. The stability against humidity and thermal shock together with the robustness of the device are attested. This work introduces a novel methodological paradigm, paving the way for innovative research to enhance the functionality of artificial tissues and joints in living organisms.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Temperatura , Humanos , Estroncio/química , Iterbio/química , Luminiscencia , Neodimio/química , Mediciones Luminiscentes/métodos , Rayos Infrarrojos
2.
Front Oncol ; 11: 628297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869013

RESUMEN

INTRODUCTION: Achieving adequate resection margins during oral cancer surgery is important to improve patient prognosis. Surgeons have the delicate task of achieving an adequate resection and safeguarding satisfactory remaining function and acceptable physical appearance, while relying on visual inspection, palpation, and preoperative imaging. Intraoperative assessment of resection margins (IOARM) is a multidisciplinary effort, which can guide towards adequate resections. Different forms of IOARM are currently used, but it is unknown how accurate these methods are in predicting margin status. Therefore, this review aims to investigate: 1) the IOARM methods currently used during oral cancer surgery, 2) their performance, and 3) their clinical relevance. METHODS: A literature search was performed in the following databases: Embase, Medline, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar (from inception to January 23, 2020). IOARM performance was assessed in terms of accuracy, sensitivity, and specificity in predicting margin status, and the reduction of inadequate margins. Clinical relevance (i.e., overall survival, local recurrence, regional recurrence, local recurrence-free survival, disease-specific survival, adjuvant therapy) was recorded if available. RESULTS: Eighteen studies were included in the review, of which 10 for soft tissue and 8 for bone. For soft tissue, defect-driven IOARM-studies showed the average accuracy, sensitivity, and specificity of 90.9%, 47.6%, and 84.4%, and specimen-driven IOARM-studies showed, 91.5%, 68.4%, and 96.7%, respectively. For bone, specimen-driven IOARM-studies performed better than defect-driven, with an average accuracy, sensitivity, and specificity of 96.6%, 81.8%, and 98%, respectively. For both, soft tissue and bone, IOARM positively impacts patient outcome. CONCLUSION: IOARM improves margin-status, especially the specimen-driven IOARM has higher performance compared to defect-driven IOARM. However, this conclusion is limited by the low number of studies reporting performance results for defect-driven IOARM. The current methods suffer from inherent disadvantages, namely their subjective character and the fact that only a small part of the resection surface can be assessed in a short time span, causing sampling errors. Therefore, a solution should be sought in the field of objective techniques that can rapidly assess the whole resection surface.

3.
Nano Lett ; 20(4): 2632-2638, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32208708

RESUMEN

Atomic layer deposition (ALD) on mechanically exfoliated 2D layered materials spontaneously produces network patterns of metal oxide nanoparticles in triangular and linear deposits on the basal surface. The network patterns formed under a range of ALD conditions and were independent of the orientation of the substrate in the ALD reactor. The patterns were produced on MoS2 or HOPG when either tetrakis(dimethylamido)titanium or bis(ethylcyclopentadienyl)manganese were used as precursors, suggesting that the phenomenon is general for 2D materials. Transmission electron microscopy revealed the presence, prior to deposition, of dislocation networks along the basal plane of mechanically exfoliated 2D flakes, indicating that periodical basal plane defects related to disruptions in the van der Waals stacking of layers, such as perfect line dislocations and triangular extended stacking faults networks, introduce a surface reactivity landscape that leads to the emergence of patterned deposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA