Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 926: 172071, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554960

RESUMEN

Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/ß-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of ß-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on ß-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/ß-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Estrógenos , Arilsulfatasas , Glucuronidasa
2.
J Pharm Biomed Anal ; 243: 116098, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493753

RESUMEN

Antibody-drug conjugates (ADCs) are a heterogeneous mixture of conjugated species with varied drug loadings. Depending on conjugation sites, linkers and drugs can exhibit different stability as influenced by the solvent-accessibility and local charge, resulting in different ADC efficacy, pharmacokinetics, and toxicity. Conjugation site analysis is critical for ADC structural characterization to assure product quality and consistency. It enables early conjugation studies at site-specific levels, confirms the absence of unexpected products to support conjugation process development, and aids in ensuring lot-to-lot consistency for comparability studies. Peptide mapping using liquid chromatography-tandem mass spectrometry is the industry standard method for analyzing conjugation sites. However, some concerns remain for this approach as the large and hydrophobic drug moieties often result in poor MS/MS fragmentation quality and impede the identification of conjugation sites. Additionally, the ionization discrepancy between conjugated and unconjugated peptides can lead to a relatively large bias for site occupancy calculation. In this work, we present a simple drug deconjugation-assisted peptide mapping method to identify and quantify the drug conjugation for ADCs with protease-cleavable linkers. Papain-based drug deconjugation was used to remove the highly hydrophobic drug moiety, which significantly improved the quantitation accuracy of conjugation level and the fragmentation quality. Sample preparation conditions were optimized to avoid introducing artificial modifications, allowing the tracking of initial sample status and subsequent changes of quality attributes during process development and stability assessment. This method was applied to analyze thermally-stressed ADC samples to monitor changes of site-specific conjugation levels, DAR, succinimide hydrolysis of the linker, and various PTMs. We believe this is an effective and straightforward tool for conjugation site analysis while simultaneously monitoring multiple quality attributes for ADCs with protease-cleavable linkers.


Asunto(s)
Inmunoconjugados , Inmunoconjugados/química , Cromatografía Liquida/métodos , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Mapeo Peptídico , Papaína
3.
Cardiovasc Res ; 120(7): 708-722, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38525555

RESUMEN

AIMS: Probiotics with high bile salt hydrolase (BSH) activity have shown to promote cardiovascular health. However, their mechanism(s) of action remain poorly understood. Here, we performed a pilot exploratory study to investigate effects of a 4-week intervention with escalating doses of a BSH-active formula containing Lactiplantibacillus plantarum strains KABP011, KABP012, and KABP013 on bile acid (BA), lipid profile, and lipoprotein function. METHODS AND RESULTS: Healthy overweight individuals were included in this study. The probiotic intake was associated with a progressive decrease of conjugated BAs in serum, due to the reduction of tauro- and glyco-conjugated forms. Plasma levels of fibroblast growth factor-19 were significantly reduced and correlated with BA changes. The probiotic induced significant changes in serum lipids, with reduction in non-HDL cholesterol (non-HDLc) and LDL cholesterol (LDLc) levels. The largest decrease was evidenced in the subgroup with higher baseline LDLc levels (LDLc > 130 mg/dL). Fasting levels of circulating apolipoprotein(Apo) B100 and ApoB48 were significantly reduced. Importantly, the decrease in non-HDLc levels was associated with a significant reduction in small LDL particles. Functional testing indicated that LDL particles had a significantly lower susceptibility to oxidation, while HDL particles gained antioxidant capacity after the probiotic intake. The microbiota profile in faeces collected at the end of the study was enriched with members of class Desulfovibrio, a taurine-consuming bacteria, likely because of the increase in free taurine in the gut due to the BSH activity of the probiotic. CONCLUSION: The intervention with L. plantarum strains induces beneficial effects on BA signature and lipoprotein profile. It reduces ApoB and small LDL levels and LDL susceptibility to oxidation and increases HDL antioxidant capacity. These metabolic profile changes suggest increased protection against atherosclerotic disease.


Asunto(s)
Ácidos y Sales Biliares , Probióticos , Humanos , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/sangre , Masculino , Femenino , Proyectos Piloto , Persona de Mediana Edad , Adulto , Biomarcadores/sangre , Colesterol/sangre , Lactobacillus plantarum , Microbioma Gastrointestinal/efectos de los fármacos , Factores de Tiempo , Apolipoproteína B-100/sangre , Amidohidrolasas/metabolismo , Apolipoproteína B-48/sangre , Resultado del Tratamiento , LDL-Colesterol/sangre , Factores de Crecimiento de Fibroblastos
4.
Anal Bioanal Chem ; 416(3): 651-661, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37578526

RESUMEN

The aim of the present research was the development and validation of a selective and reliable method for the indirect and direct determination of acidic herbicide glucosides. Enzymatic deconjugation was investigated as a mild alternative to harsh alkaline hydrolysis. Various enzymatic options for deconjugation were exploited. One out of nine tested specific enzymes proved to be practical and repeatable for different matrices and concentration ranges, leading to the complete deconjugation of the glucosides. The method was validated according to the SANTE/11312/2021 guideline for cereals and oilseeds and for a rice-based infant formula. Additionally, for four acidic herbicide glucosides available on the market, a quantitative method for direct determination of the intact glucosides was optimized and validated. In both methods, the average recoveries were within 70-120%. The limits of quantification (LOQ) achieved were 10 µg kg-1 and 2.5 µg kg-1 for the intact glucosides and the free acids in cereal and oilseeds. For the rice-based infant formula, the LOQ was 1 µg kg-1 (3 µg kg-1 for dichlorprop). To confirm its applicability, the deconjugation approach was tested for fifteen samples (cereals, oilseeds, and citrus) with incurred residues. Comparisons were made between the method without deconjugation, and two methods with deconjugation, the here proposed enzymatic deconjugation and the more commonly used alkaline hydrolysis. The inclusion of enzymatic deconjugation during sample preparation led to an increase up to 2.7-fold compared to analysis without deconjugation. Enzymatic deconjugation resulted in comparable results to alkaline hydrolysis for 13 out of 15 samples.


Asunto(s)
Herbicidas , Humanos , Lactante , Herbicidas/análisis , Cromatografía Liquida/métodos , Grano Comestible/química , Glucósidos/análisis , Espectrometría de Masas en Tándem/métodos
5.
J Chromatogr A ; 1715: 464575, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38150875

RESUMEN

Antibody-drug conjugates (ADCs) are designed by chemically linking highly potent cytotoxic small molecule drugs to monoclonal antibodies of unique specificity for targeted destruction of cancer cells. This innovative class of molecules incurs unique developmental challenges due to its structural complexity of having both small molecule and protein components. The stability of the small molecule payload on the ADC is a critical attribute as it directly relates to product efficacy and patient safety. This study describes the use of an end-to-end automated workflow for effective and robust characterization of the small molecule drug while it is conjugated to the antibody. In this approach, online deconjugation was accomplished by an autosampler user defined program and 1D size exclusion chromatography was utilized to provide separation between small molecule and protein species. The small molecule portion was then trapped and sent to the 2D for separation and quantification by reversed-phase liquid chromatography with identification of impurities and degradants by mass spectrometry. The feasibility of this system was demonstrated on an ADC with a disulfide-based linker. This fully automated approach avoids tedious sample preparation that may lead to sample loss and large assay variability. Under optimized conditions, the method was shown to have excellent specificity, sensitivity (LOD of 0.036 µg/mL and LOQ of 0.144 µg/mL), linearity (0.04-72.1 µg/mL), precision (system precision %RSD of 1.7 and method precision %RSD of 3.4), accuracy (97.4 % recovery), stability-indicating nature, and was successfully exploited to analyze the small molecule drug on a panel of stressed ADC samples. Overall, the workflow established here offers a powerful analytical tool for profiling the in-situ properties of small molecule drugs conjugated to antibodies and the obtained information could be of great significance for guiding process/formulation development and understanding pharmacokinetic/pharmacodynamic behavior of ADCs.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Humanos , Inmunoconjugados/química , Anticuerpos Monoclonales/química , Cromatografía de Fase Inversa/métodos , Cromatografía en Gel , Espectrometría de Masas
6.
Cell Mol Life Sci ; 80(11): 344, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910326

RESUMEN

During macroautophagy, the Atg8 protein is conjugated to phosphatidylethanolamine (PE) in autophagic membranes. In Apicomplexan parasites, two cysteine proteases, Atg4 and ovarian tumor unit (Otu), have been identified to delipidate Atg8 to release this protein from membranes. Here, we investigated the role of cysteine proteases in Atg8 conjugation and deconjugation and found that the Plasmodium parasite consists of both activities. We successfully disrupted the genes individually; however, simultaneously, they were refractory to deletion and essential for parasite survival. Mutants lacking Atg4 and Otu showed normal blood and mosquito stage development. All mice infected with Otu KO sporozoites became patent; however, Atg4 KO sporozoites either failed to establish blood infection or showed delayed patency. Through in vitro and in vivo analysis, we found that Atg4 KO sporozoites invade and normally develop into early liver stages. However, nuclear and organelle differentiation was severely hampered during late stages and failed to mature into hepatic merozoites. We found a higher level of Atg8 in Atg4 KO parasites, and the deconjugation of Atg8 was hampered. We confirmed Otu localization on the apicoplast; however, parasites lacking Otu showed no visible developmental defects. Our data suggest that Atg4 is the primary deconjugating enzyme and that Otu cannot replace its function completely because it cleaves the peptide bond at the N-terminal side of glycine, thereby irreversibly inactivating Atg8 during its recycling. These findings highlight a role for the Atg8 deconjugation pathway in organelle biogenesis and maintenance of the homeostatic cellular balance.


Asunto(s)
Proteasas de Cisteína , Malaria , Parásitos , Animales , Ratones , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Parásitos/metabolismo , Plasmodium berghei , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Protozoarias/metabolismo
7.
Anal Bioanal Chem ; 415(29-30): 7297-7313, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946034

RESUMEN

Chemicals infiltrate our daily experiences through multiple exposure pathways. Human biomonitoring (HBM) is routinely used to comprehensively understand these chemical interactions. Historically, HBM depended on targeted screening methods limited to a relatively small set of chemicals with triple quadrupole instruments typically. However, recent advances in high-resolution mass spectrometry (HRMS) have facilitated the use of broad-scope target, suspect, and non-target strategies, enhancing chemical exposome characterization within acceptable detection limits. Despite these advancements, establishing robust and efficient sample treatment protocols is still essential for trustworthy broad-range chemical analysis. This study sought to validate a methodology leveraging HRMS-based strategies for accurate profiling of exogenous chemicals and related metabolites in urine samples. We evaluated five extraction protocols, each encompassing various chemical classes, such as pharmaceuticals, plastic additives, personal care products, and pesticides, in terms of their extraction recoveries, linearity, matrix effect, sensitivity, and reproducibility. The most effective protocol was extensively validated and subsequently applied to 10 real human urine samples using wide-scope target analysis encompassing over 2000 chemicals. We successfully identified and semi-quantified a total of 36 chemicals using an ionization efficiency-based model, affirming the methodology's robust performance. Notably, our results dismissed the need for a deconjugation step, a typically labor-intensive and time-consuming process.


Asunto(s)
Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas/métodos
8.
Anal Bioanal Chem ; 415(5): 975-989, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633620

RESUMEN

Technical grade branched nonylphenol (NP) was determined in human urine by online solid phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry (SPE-UHPLC-MS/MS). Prior to analysis, urine specimens were simply diluted and enzymatically deconjugated. The run time of the chromatography, including SPE and re-equilibration, was 9 min per injection. The enzymatic cleavage of NP conjugates was optimised with incurred sample material from a human metabolism study: the highest recoveries were obtained with ß-glucuronidase from E. coli K 12 in 0.1 M ammonium acetate at pH 6.5, within a minimal hydrolysis time of 30 to 60 min. Using sodium acetate instead of ammonium acetate led to systematically decreased recovery rates. The analytical method was validated regarding its precision (coefficients of variation: 2.9-7.4%), accuracy (relative recovery rates: 93-105%), robustness (relative recovery rates in individual urine matrices: 92-117%), selectivity, and limit of quantification (1.0 µg L-1). Fundamental aspects in the analysis of technical product mixtures such as NP, comprising various isomers and homologues, were considered. Validation results, an exposure scenario and the application of the procedure to real samples, show that it enables a rugged monitoring of NP exposures above, at, and significantly below health-based guidance values, corresponding to daily NP intakes in the low µg kg-1 d-1 range. On the other hand, background levels in non-specifically exposed populations cannot be detected with this method. Hence, while alternative approaches should be pursued for NP analysis at environmental trace level, the speed and simplicity of our method are ideal for high-throughput human biomonitoring in occupational medicine.


Asunto(s)
Escherichia coli , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Extracción en Fase Sólida/métodos
9.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275999

RESUMEN

Analyzing urine is common in drug-facilitated sexual assault cases if the analysis of blood is not optimal. The efficient enzymatic pretreatment of urine is important for cleaving glucuronides and improving the detection of the parent drug. The aim was to investigate the efficiency of three ß-glucuronidases on eleven glucuronides relevant to DFSA at different incubation periods and temperatures. Human drug-free urine was fortified with 11 glucuronides, hydrolyzed with either ß-glucuronidase/arylsulfatase (Helix Pomatia), recombinant ß-glucuronidase B-One™ or recombinant ß-glucuronidase BGTurbo™ and incubated for 5, 10, 60 min, 18 h and 24 h at 20 °C/40 °C/55 °C before UHPLC-MS/MS analysis. The stability of 141 drugs and metabolites relevant to DFSA was investigated by incubating fortified urine under the same hydrolysis conditions. B-One™ showed efficient hydrolysis (>90%) of most glucuronides in 5 min at all temperatures, while BGTurbo™ showed a similar efficiency (>90%), but the optimal temperature (20-55 °C) and incubation time (5-60 min) varied among analytes. The ß-glucuronidase/arylsulfatase had the lowest efficiency and required the longest incubation (24 h) at 40-55 °C. The stability of 99% of 141 drugs and metabolites was not affected by incubation at 20-55 °C for 24 h. Recombinant enzymes show promising results for the simple and efficient hydrolysis of a broad panel of glucuronides relevant for DFSA.

10.
J Mol Biol ; 434(24): 167875, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36334780

RESUMEN

SUMO proteases or deSUMOylases regulate the lifetime of SUMO-conjugated targets in the cell by cleaving off the isopetidic bond between the substrate and the SUMO modifier, thus reversing the conjugation activity of the SUMO E3 ligases. In humans the deSUMOylating activity is mainly conducted by the SENP/ULP protease family, which is constituted of six members sharing a homologous catalytic globular domain. SENP6 and SENP7 are the most divergent members of the family and they show a unique SUMO2/3 isoform preference and a particular activity for dismantling polySUMO2 chains. Here, we present the crystal structure of the catalytic domain of human SENP7 bound to SUMO2, revealing structural key elements for the SUMO2 isoform specificity of SENP7. In particular, we describe the specific contacts between SUMO2 and a unique insertion in SENP7 (named Loop1) that is responsible for the SUMO2 isoform specificity. All the other interface contacts between SENP7 and SUMO2, including the SUMO2 C-terminal tail interaction, are conserved among members of the SENP/ULP family. Our data give insight into an evolutionary adaptation to restrict the deSUMOylating activity in SENP6 and SENP7 for the SUMO2/3 isoforms.


Asunto(s)
Endopeptidasas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación , Humanos , Cisteína Endopeptidasas/química , Endopeptidasas/química , Isoformas de Proteínas/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Especificidad por Sustrato
11.
JHEP Rep ; 4(12): 100592, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36439639

RESUMEN

Background & Aims: Increased expression of IFN-stimulated gene 15 (ISG15) and subsequently increased ISGylation are key factors in the host response to viral infection. In this study, we sought to characterize the expression of ISG15, ISGylation, and associated enzymes at each stage of differentiation from induced pluripotent stem cells (iPSCs) to hepatocytes. Methods: To study the regulation of ISGylation, we utilized patient samples and in vitro cell culture models including iPSCs, hepatocytes-like cells, immortalized cell lines, and primary human hepatocytes. Protein/mRNA expression were measured following treatment with poly(I:C), IFNα and HCV infection. Results: When compared to HLCs, we observed several novel aspects of the ISGylation pathway in iPSCs. These include a lower baseline expression of the ISGylation-activating enzyme, UBE1L, a lack of IFN-induced expression of the ISGylation-conjugation enzyme UBE2L6, an attenuated activation of the transcription factor STAT1 and constitutive expression of SOCS1. ISGylation was observed in iPSCs following downregulation of SOCS1, which facilitated STAT1 activation and subsequently increased expression of UBE2L6. Intriguingly, HCV permissive transformed hepatoma cell lines demonstrated higher intrinsic expression of SOCS1 and weaker ISGylation following IFN treatment. SOCS1 downregulation in HCV-infected Huh 7.5.1 cells led to increased ISGylation. Conclusions: Herein, we show that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Furthermore, as iPSCs differentiate into hepatocytes, epigenetic mechanisms regulate ISGylation by modifying UBE1L and SOCS1 expression levels. Overall, this study demonstrates that the development of cell-intrinsic innate immunity during the differentiation of iPSCs to hepatocytes provides insight into cell type-specific regulation of host defense responses and related oncogenic processes. Impact and implications: To elucidate the mechanism underlying regulation of ISGylation, a key process in the innate immune response, we studied changes in ISGylation-associated genes at the different stages of differentiation from iPSCs to hepatocytes. We found that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Importantly, epigenetic regulation of SOCS1 and subsequently ISGylation may be important factors in the development of cell type-specific host defense responses in hepatocytes that should be considered when studying chronic infections and oncogenic processes in the liver.

12.
Chemistry ; 28(67): e202202377, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245264

RESUMEN

N-terminal Cys modification has been intensively studied to produce homogeneous bioconjugates essentially through two modes of reaction: reversible modification with the equilibrium shifted towards the formation of the desired conjugate or stable and irreversible conjugates. Herein, we report a new method of N-terminal cysteine modification using O-salicylaldehyde esters (OSAEs) through fast conjugation and irreversible deconjugation. These reagents can rapidly react with N-terminal Cys at low-micromolar concentration to form thiazolidines with subsequent hydrolysis of the ester moiety to the phenolic derivative. These phenolic thiazolidines can be hydrolyzed at acidic pH (≈4.5) to recover the intact N-terminal Cys. Bioconjugation reactions using OSAEs offer controlled reversibility to as act as a protecting group for N-terminal cysteines, allowing the modification of in-chain residues without perturbing the N-terminal Cys, which can then be deprotected and used as a conjugation site.


Asunto(s)
Aldehídos , Cisteína , Cisteína/química , Tiazolidinas , Ésteres/química
13.
Genes (Basel) ; 13(9)2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36140713

RESUMEN

Estrogen circulating in blood has been proved to be a strong biomarker for breast cancer. A ß-glucuronidase enzyme (GUS) from human gastrointestinal tract (GIT) microbiota including probiotics has significant involvement in enhancing the estrogen concentration in blood through deconjugation of glucuronidated estrogens. The present project has been designed to explore GIT microbiome-encoded GUS enzymes (GUSOME) repertoire in normal human and breast cancer patients. For this purpose, a total of nineteen GUS enzymes from human GIT microbes, i.e., seven from healthy and twelve from breast cancer patients have been focused on. Protein sequences of enzymes retrieved from UniProt database were subjected to ProtParam, CELLO2GO, SOPMA (secondary structure prediction method), PDBsum (Protein Database summaries), PHYRE2 (Protein Homology/AnalogY Recognition Engine), SAVES v6.0 (Structure Validation Server), MEME version 5.4.1 (Multiple Em for Motif Elicitation), Caver Web server v 1.1, Interproscan and Predicted Antigenic Peptides tool. Analysis revealed the number of amino acids, isoelectric point, extinction coefficient, instability index and aliphatic index of GUS enzymes in the range of 586−795, 4.91−8.92, 89,980−155,075, 25.88−40.93 and 71.01−88.10, respectively. Sub-cellular localization of enzyme was restricted to cytoplasm and inner-membrane in case of breast cancer patients' bacteria as compared to periplasmic space, outer membrane and extracellular space in normal GIT bacteria. The 2-D structure analysis showed α helix, extended strand, ß turn and random coil in the range of 27.42−22.66%, 22.04−25.91%, 5.39−8.30% and 41.75−47.70%, respectively. The druggability score was found to be 0.05−0.45 and 0.06−0.80 in normal and breast cancer patients GIT, respectively. The radius, length and curvature of catalytic sites were observed to be 1.1−2.8 Å, 1.4−15.9 Å and 0.65−1.4, respectively. Ten conserved protein motifs with p < 0.05 and width 25−50 were found. Antigenic propensity-associated sequences were 20−29. Present study findings hint about the use of the bacterial GUS enzymes against breast cancer tumors after modifications via site-directed mutagenesis of catalytic sites involved in the activation of estrogens and through destabilization of these enzymes.


Asunto(s)
Neoplasias de la Mama , Microbiota , Aminoácidos , Bacterias/metabolismo , Biomarcadores , Neoplasias de la Mama/genética , Estrógenos/metabolismo , Femenino , Tracto Gastrointestinal/microbiología , Glucuronidasa/genética , Glucuronidasa/metabolismo , Humanos , Microbiota/genética
14.
Biosci Biotechnol Biochem ; 86(12): 1670-1679, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36085182

RESUMEN

The major quercetin metabolite, quercetin-3-glucuronide, exerts various biological activities, including anti-inflammatory effects. This study aimed to evaluate the metabolic profiles and biological properties of the positional isomers of quercetin monoglucuronides (Q3G, Q7G, Q3'G, and Q4'G) in activated macrophages. In addition to quercetin aglycone, Q7G was more cytotoxic than the other quercetin monoglucuronides (QGs), which corresponded to its lower stability under neutral pH conditions. Q3G was most effective in inhibiting both LPS-dependent induction of IL-6 and RANKL-dependent activation of tartrate-resistant acid phosphatase; however, Q3'G and Q4'G may also help exert biological activities without potential cytotoxicity. The deconjugation efficacy to generate quercetin aglycone differed among QGs, with the highest efficacy in Q3G. These results suggest that the chemical or biological properties and metabolic profiles may depend on the stability of QGs to generate quercetin aglycone using ß-glucuronidase.


Asunto(s)
Glucurónidos , Quercetina , Ratones , Animales , Quercetina/química , Lipopolisacáridos/farmacología , Antioxidantes/farmacología , Células RAW 264.7
15.
Toxins (Basel) ; 14(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36006212

RESUMEN

Microcystins (MCs) are cyclic heptapeptidic toxins produced by many cyanobacteria. Microcystins can be accumulated in various matrices in two forms: a free cellular fraction and a covalently protein-bound form. To detect and quantify the concentration of microcystins, a panel of techniques on various matrices (water, sediments, and animal tissues) is available. The analysis of MCs can concern the free or the total (free plus covalently bound) fractions. Free-form analyses of MCs are the most common and easiest to detect, whereas total-form analyses are much less frequent and more complex to achieve. The objective of this review is to summarize the different methods of extraction and analysis that have been developed for total forms. Four extraction methods were identified: MMPB (2-methyl-3-methoxy-4-phenylbutyric acid) method, deconjugation at basic pH, ozonolysis, and laser irradiation desorption. The study of the bibliography on the methods of extraction and analysis of the total forms of MCs showed that the reference method for the subject remains the MMPB method even if alternative methods and, in particular, deconjugation at basic pH, showed results encouraging the continuation of the methodological development on different matrices and on naturally-contaminated samples.


Asunto(s)
Técnicas de Química Analítica , Cianobacterias , Microcistinas/análisis , Microcistinas/aislamiento & purificación , Animales , Agua
16.
Sci Total Environ ; 851(Pt 1): 158061, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985578

RESUMEN

Wastewater-based epidemiology is a tool incorporating biomarker analysis that can be used to monitor the health status of a population. Indicators of health include endogenous oxidative stress biomarkers and hormones, or exogenous such as alcohol and nicotine. 8-Iso-prostaglandin F2α/ß is a biomarker of endogenous metabolism that can be used to measure oxidative stress in a community. Benzodiazepines are a harmful subclass of anxiolytics either prescribed or sourced illegally. The analysis of oxidative stress markers and uptake of benzodiazepines in wastewater may provide information about distress in the community. A method has been applied to detect 8-isoPGF2α/ß and the illicit benzodiazepines clonazolam, flubromazolam and flualprazolam in addition to other prescribed benzodiazepines in wastewater. These substances have been sold as counterfeit pharmaceutical products, such as Xanax, which was formulated to include alprazolam. Deconjugation was initially performed on wastewater samples, followed by liquid-liquid extraction for isoprostanes and solid phase extraction for benzodiazepines to determine the total levels of these analytes. Limits of quantification were in the range of 0.5-2 ng/L for all the analytes except 8-isoPGF2α/ß which was 50 ng/L. Stability, recovery and matrix effect studies were also conducted. Finally, this method was applied to influent wastewater from South Australia which showed the prevalence of 8-isoPGF2α/ß and benzodiazepines.


Asunto(s)
Ansiolíticos , Aguas Residuales , Alprazolam/análisis , Benzodiazepinas , Biomarcadores/análisis , Hormonas , Isoprostanos , Nicotina/análisis , Prostaglandinas , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Aguas Residuales/análisis
17.
Chem Pharm Bull (Tokyo) ; 70(5): 375-382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491194

RESUMEN

Evaluation of endogenous melatonin (MEL) secretion using its urinary metabolites is useful for the treatment of circadian rhythm sleep disorders. The primary melatonin metabolites excreted in the urine are 6-hydroxymelatonin (6-O-MEL) sulfate (S-O-MEL) and 6-O-MEL glucuronate, which result from sequential MEL metabolism by phases I and II drug metabolizing enzymes. To determine the accurate MEL secretion level, these urinary metabolites should be enzymatically deconjugated and converted into MEL. Furthermore, the use of LC-tandem mass spectrometry (LC-MS/MS) is preferable for the precision of this determination. Therefore, as part of our ongoing efforts to ultimately determine the level of MEL secretion, we herein aimed to develop an LC-MS/MS-based quantification method for 6-O-MEL and optimize deconjugation conditions. We determined the LC-MS/MS conditions of 6-O-MEL measurement and optimized the conditions of enzymatic reactions. The most efficient S-O-MEL deconjugation (102.1%) was achieved with Roche Glucuronidase/Arylsulfatase (from Helix pomatia) at 37 °C, pH-4.0 reaction buffer, and 60 min of reaction time. For human urine samples, the minimum amount of the enzyme required was 5944 units. Under these conditions, the accuracy and precision values of the 6-O-MEL determination (relative errors and standard deviation) were -3.60--0.47% and <6.80%, respectively. Finally, we analyzed the total amount of MEL metabolites excreted in 24-h urine samples; it was 6.70-11.28 µg in three subjects, which is comparable with the values reported till date. Thus, we have established a new method of measuring the total 6-O-MEL in human urine samples using an LC-MS/MS coupled with the prerequisite deconjugation reaction.


Asunto(s)
Melatonina , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Humanos , Melatonina/análogos & derivados , Melatonina/metabolismo , Sulfatos , Espectrometría de Masas en Tándem/métodos
18.
Molecules ; 27(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458678

RESUMEN

The aquaculture industry has become a sustainable source of food for humans. Remaining challenges include disease issues and ethical concerns for the discomfort and stress of farmed fish. There is a need for reliable biomarkers to monitor welfare in fish, and the stress hormone cortisol has been suggested as a good candidate. This study presents a novel method for measurement of cortisol in fish feces based on enzymatic hydrolysis, liquid−liquid extraction, derivatization, and finally instrumental analysis by liquid chromatography coupled with tandem mass spectrometry. Hydrolysis and extraction conditions were optimized. Cortisol appeared to be mostly conjugated to sulfate and less conjugated to glucuronic acid in the studied samples of feces from farmed Atlantic salmon. The method was suitable for quantification of cortisol after enzymatic deconjugation by either combined glucuronidase and sulfatase activity, or by glucuronidase activity alone. The limit of detection was 0.15 ng/g, the limit of quantification was 0.34 ng/g, and the method was linear (R2 > 0.997) up to 380 ng/g, for measurement of cortisol in wet feces. Method repeatability and intermediate precision were acceptable, both with a coefficient of variation (CV) of 11%. Stress level was high in fish released into seawater, and significantly reduced after eight days.


Asunto(s)
Hidrocortisona , Espectrometría de Masas en Tándem , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión , Cromatografía Liquida/métodos , Heces/química , Peces , Glucuronidasa , Hidrocortisona/análisis , Espectrometría de Masas en Tándem/métodos
19.
Bioanalysis ; 14(24): 1533-1545, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36825963

RESUMEN

Background: Antibody-drug conjugates (ADCs) are a promising modality for cancer treatment; however, considering their complicated nature, analytical complexity in understanding their pharmacokinetics and pharmacodynamics in the body presents a significant challenge. Results: Vorsetuzumab maleimidocaproyl valine-citrulline p-aminobenzyloxycarbonyl monomethyl auristatin E was used to develop pretreatment and analytical workflows suitable for ADCs. Monomethyl auristatin E release and drug-to-antibody ratio retention were consistent in mouse plasma but inconsistent in monkey and human plasma. Further, metabolites were species-specific. Microflow-liquid chromatography/high-resolution mass spectrometry (LC-HRMS) resulted in a 4-7-fold improvement in detection sensitivity compared with conventional flow LC-HRMS. Conclusion: Microflow-LC-HRMS can be a useful tool in understanding the complex properties of ADCs in the body from a drug metabolism and pharmacokinetics point of view.


Drug-to-antibody ratio (DAR), payload release and metabolite profile of deconjugated payload-linker of vorsetuzumab maleimidocaproyl valine-citrulline p-aminobenzyloxycarbonyl monomethyl auristatin E, an antibody­drug conjugate (ADC) with cleavable linker and monomethyl auristatin E as payload, are reported. Species-specific retention of DAR, payload release and metabolite patterns of deconjugated payload-linker of the ADC are summarized. Exploring the fate of payload-linker moieties deconjugated from ADCs in the body is also vital to understanding pharmacological activity and toxicity. Species-specific metabolite patterns of the ADC provided insight into the importance of optimization of the payload-linker moiety in biological samples, especially in humans. In terms of a more sensitive analytical platform for drug metabolism and pharmacokinetic evaluation, microflow-liquid chromatography/high-resolution mass spectrometry (LC­HRMS) in DAR analysis was found to take advantage of the improvement of detection sensitivity compared with conventional LC­HRMS. Because ADCs are a complex drug modality, these results indicated the importance of evaluation of ADCs from a drug metabolism and pharmacokinetics point of view to understand the pharmacology and toxicology of ADCs, more precisely.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Ratones , Humanos , Inmunoconjugados/análisis , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Haplorrinos/metabolismo
20.
Animals (Basel) ; 11(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34827890

RESUMEN

Boars express high testicular levels of sulfotransferase enzymes, and consequently, the boar taint causing compound androstenone predominantly circulates as a steroid sulfate. Androstenone sulfate is suspected to function as a steroid reservoir that can be deconjugated to provide a source of free androstenone for accumulation. Therefore, the purpose of this study was to characterize the uptake and deconjugation of androstenone sulfate in the adipose tissue of the boar. Real-time PCR was used to quantify the expression of steroid sulfatase (STS) and several organic anion transporting polypeptides (OATPs) in the adipose tissue. Additionally, [3H]-androstenone sulfate was incubated with adipocytes or supernatant from homogenized fat to assess steroid uptake and conversion, respectively. A positive correlation existed between OATP-B expression and androstenone sulfate uptake (r = 0.86, p = 0.03), as well as between STS expression and androstenone sulfate conversion (r = 0.76, p < 0.001). Moreover, fat androstenone concentrations were positively correlated (r = 0.85, p < 0.001) with androstenone sulfate conversion and tended to increase with STS expression in early maturing boars. This suggests that androstenone sulfate uptake and deconjugation are mediated by OATP-B and STS, respectively, which may influence the development of boar taint in early maturing animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA