Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276308

RESUMEN

SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.

2.
Cell Commun Signal ; 22(1): 395, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123188

RESUMEN

Esophageal cancer is common worldwide, with ESCC being the most frequent tumor in East Asia. Tumor-associated macrophages are an important component of the ESCC microenvironment. SUMOylation is a post-translational modification of proteins, and SUMO-specific proteases (SENPs) play an important role in de-SUMOylation. In human patients, we discovered that the levels of SENP3 were upregulated in the tumor-associated macrophages. Furthermore, the loss of SENP3 enhanced the alternative activation of macrophages in the 4-NQO-induced ESCC mice model. This is the first study to identify SENP3-mediated macrophage polarization via the de-SUMOylation of interferon regulatory factor 4 (IRF4) at the K349 site. Alternative activation of macrophages increases the migration and invasion potential of ESCC cells and promotes their progression in vivo. Moreover, patients with relatively low SENP3 expression in macrophages exhibit higher primary PET SUVmax value and lymph node metastasis rates. In summary, this study revealed that SENP3-mediated IRF4 de-SUMOylation is crucial for the alternative activation of macrophages and influences the progression of ESCC.


Asunto(s)
Cisteína Endopeptidasas , Factores Reguladores del Interferón , Activación de Macrófagos , Sumoilación , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Progresión de la Enfermedad , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Macrófagos/metabolismo , Macrófagos Asociados a Tumores/metabolismo
3.
J Pediatr ; 274: 114180, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972567

RESUMEN

To evaluate a novel candidate disease gene, we engaged international collaborators and identified rare, biallelic, specifically homozygous, loss of function variants in SENP7 in 4 children from 3 unrelated families presenting with neurodevelopmental abnormalities, dysmorphism, and immunodeficiency. Their clinical presentations were characterized by hypogammaglobulinemia, intermittent neutropenia, and ultimately death in infancy for all 4 patients. SENP7 is a sentrin-specific protease involved in posttranslational modification of proteins essential for cell regulation, via a process referred to as deSUMOylation. We propose that deficiency of deSUMOylation may represent a novel mechanism of primary immunodeficiency.

4.
J Leukoc Biol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934654

RESUMEN

Genetic association between SUMO-specific protease 1 (SENP1) and acute myeloid leukemia (AML) has been validated. However, the mechanism by which SENP1 affects AML proliferation, apoptosis, and autophagy remains unknown. The levels of SENP1 and polypyrimidine tract-binding protein 1 (PTBP1) were measured in AML patients, AML cell lines, and xenograft tissues. The effects of SENP1 on AML proliferation, apoptosis, and BECN1-dependent autophagy were assessed through in vitro and in vivo loss- or gain-of-function experiments. SUMOylation analysis using immunoprecipitation (IP), RNA pull-down, RIP, and RNA stability assays were used to explore the molecular mechanism of SENP1 in AML development. The SENP1 level was elevated in AML samples. Silencing SENP1 impeded the development of AML, as evidenced by the inhibition of proliferation and promotion of G1 phase arrest and apoptosis resulting from SENP1 depletion in AML cells. Moreover, silencing of SENP1 restrained BECN1-depentent autophagy in AML cells. In addition, the overexpression of BECN1 or PTBP1 partially neutralized the effect of SENP1 knockdown on AML cell behavior. Mechanistically, SENP1 mediated PTBP1 deSUMOylation, which then directly interacted with BECN1 mRNA and enhanced its stability. In vivo experiments further confirmed the repressive effects of SENP1 suppression on AML development. Collectively, the SENP1/PTBP1/BECN1 signaling axis has been identified as a significant therapeutic target for enhancing AML treatment.

5.
New Phytol ; 243(4): 1361-1373, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38934066

RESUMEN

Posttranslational modification of multiple ABA signaling components is an essential process for the adaptation and survival of plants under stress conditions. In our previous study, we established that the pepper group A PP2C protein CaAITP1, one of the core components of ABA signaling, undergoes ubiquitination mediated by the RING-type E3 ligase CaAIRE1. In this study, we discovered an additional form of regulation mediated via the SUMOylation of CaAITP1. Pepper plants subjected to drought stress were characterized by reductions in both the stability and SUMOylation of CaAITP1 protein. Moreover, we identified a SUMO protease, Capsicum annuum DeSUMOylating Isopeptidase 2 (CaDeSI2), as a new interacting partner of CaAITP1. In vitro and in vivo analyses revealed that CaAITP1 is deSUMOylated by CaDeSI2. Silencing of CaDeSI2 in pepper plants led to drought-hypersensitive and ABA-hyposensitive phenotypes, whereas overexpression of CaDeSI2 in transgenic Arabidopsis plants resulted in the opposite phenotypes. Importantly, we found that the CaAITP1 protein was stabilized in response to the silencing of CaDeSI2, and CaDeSI2 and CaAITP1 co-silenced pepper plants were characterized by drought-tolerant phenotypes similar to those observed in CaAITP1-silenced pepper. Collectively, our findings indicate that CaDeSI2 reduces the stability of CaAITP1 via deSUMOylation, thereby positively regulating drought tolerance.


Asunto(s)
Ácido Abscísico , Capsicum , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Capsicum/genética , Capsicum/fisiología , Capsicum/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Sumoilación , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/fisiología , Silenciador del Gen , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Unión Proteica , Estabilidad Proteica , Fenotipo
6.
Cell Commun Signal ; 22(1): 206, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566133

RESUMEN

BACKGROUND: The protein annexin A6 (AnxA6) is involved in numerous membrane-related biological processes including cell migration and invasion by interacting with other proteins. The dysfunction of AnxA6, including protein expression abundance change and imbalance of post-translational modification, is tightly related to multiple cancers. Herein we focus on the biological function of AnxA6 SUMOylation in hepatocellular carcinoma (HCC) progression. METHODS: The modification sites of AnxA6 SUMOylation were identified by LC-MS/MS and amino acid site mutation. AnxA6 expression was assessed by immunohistochemistry and immunofluorescence. HCC cells were induced into the epithelial-mesenchymal transition (EMT)-featured cells by 100 ng/mL 12-O-tetradecanoylphorbol-13-acetate exposure. The ability of cell migration was evaluated under AnxA6 overexpression by transwell assay. The SUMO1 modified AnxA6 proteins were enriched from total cellular proteins by immunoprecipitation with anti-SUMO1 antibody, then the SUMOylated AnxA6 was detected by Western blot using anti-AnxA6 antibody. The nude mouse xenograft and orthotopic hepatoma models were established to determine HCC growth and tumorigenicity in vivo. The HCC patient's overall survival versus AnxA6 expression level was evaluated by the Kaplan-Meier method. RESULTS: Lys579 is a major SUMO1 modification site of AnxA6 in HCC cells, and SUMOylation protects AnxA6 from degradation via the ubiquitin-proteasome pathway. Compared to the wild-type AnxA6, its SUMO site mutant AnxA6K579R leads to disassociation of the binding of AnxA6 with RHOU, subsequently RHOU-mediated p-AKT1ser473 is upregulated to facilitate cell migration and EMT progression in HCC. Moreover, the SENP1 deSUMOylates AnxA6, and AnxA6 expression is negatively correlated with SENP1 protein expression level in HCC tissues, and a high gene expression ratio of ANXA6/SENP1 indicates a poor overall survival of patients. CONCLUSIONS: AnxA6 deSUMOylation contributes to HCC progression and EMT phenotype, and the combination of AnxA6 and SENP1 is a better tumor biomarker for diagnosis of HCC grade malignancy and prognosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Anexina A6/genética , Anexina A6/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Cromatografía Liquida , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Sumoilación , Espectrometría de Masas en Tándem
7.
J Biol Chem ; 300(6): 107319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677512

RESUMEN

Lipid metabolism is important for the maintenance of physiological homeostasis. Several members of the small ubiquitin-like modifier (SUMO)-specific protease (SENP) family have been reported as the regulators of lipid homeostasis. However, the function of Senp7 in lipid metabolism remains unclear. In this study, we generated both conventional and adipocyte-specific Senp7 KO mice to characterize the role of Senp7 in lipid metabolism homeostasis. Both Senp7-deficient mice displayed reduced white adipose tissue mass and decreased size of adipocytes. By analyzing the lipid droplet morphology, we demonstrated that the lipid droplet size was significantly smaller in Senp7-deficient adipocytes. Mechanistically, Senp7 could deSUMOylate the perilipin family protein Plin4 to promote the lipid droplet localization of Plin4. Our results reveal an important role of Senp7 in the maturation of lipid droplets via Plin4 deSUMOylation.


Asunto(s)
Tejido Adiposo Blanco , Gotas Lipídicas , Ratones Noqueados , Perilipina-4 , Animales , Ratones , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Perilipina-4/metabolismo , Perilipina-4/genética , Sumoilación
8.
Front Pharmacol ; 15: 1354323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389923

RESUMEN

Acting as a cysteine protease, small ubiquitin-like modifier (SUMO)/sentrin-specific protease1 (SENP1) involved in multiple physiological and pathological processes through processing the precursor SUMO protein into mature form and deSUMOylating target protein. It has been reported that SENP1 is highly expressed and plays a carcinogenic role in various cancers. In this paper, we mainly explore the function and mechanism of SENP1 in tumor cell proliferation, apoptosis, invasion, metastasis, stemness, angiogenesis, metabolism and drug resistance. Furthermore, the research progress of SENP1 inhibitors for cancer treatment is introduced. This study aims to provide theoretical references for cancer therapy by targeting SENP1.

9.
EMBO Rep ; 25(1): 68-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182817

RESUMEN

The steady-state levels of protein sumoylation depend on relative rates of conjugation and desumoylation. Whether SUMO modifications are generally long-lasting or short-lived is unknown. Here we show that treating budding yeast cultures with 1,10-phenanthroline abolishes most SUMO conjugations within one minute, without impacting ubiquitination, an analogous post-translational modification. 1,10-phenanthroline inhibits the formation of the E1~SUMO thioester intermediate, demonstrating that it targets the first step in the sumoylation pathway. SUMO conjugations are retained after treatment with 1,10-phenanthroline in yeast that express a defective form of the desumoylase Ulp1, indicating that Ulp1 is responsible for eliminating existing SUMO modifications almost instantly when de novo sumoylation is inhibited. This reveals that SUMO modifications are normally extremely transient because of continuous desumoylation by Ulp1. Supporting our findings, we demonstrate that sumoylation of two specific targets, Sko1 and Tfg1, virtually disappears within one minute of impairing de novo sumoylation. Altogether, we have identified an extremely rapid and potent inhibitor of sumoylation, and our work reveals that SUMO modifications are remarkably short-lived.


Asunto(s)
Fenantrolinas , Saccharomyces cerevisiae , Sumoilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinación
10.
New Phytol ; 241(1): 363-377, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37786257

RESUMEN

Nuclear pore complex (NPC) is composed of multiple nucleoporins (Nups). A plethora of studies have highlighted the significance of NPC in plant immunity. However, the specific roles of individual Nups are poorly understood. NUCLEAR PORE ANCHOR (NUA) is a component of NPC. Loss of NUA leads to an increase in SUMO conjugates and pleiotropic developmental defects in Arabidopsis thaliana. Herein, we revealed that NUA is required for plant defense against multiple pathogens. NUCLEAR PORE ANCHOR associates with the transcriptional corepressor TOPLESS-RELATED1 (TPR1) and contributes to TPR1 deSUMOylation. Significantly, NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, specifically deSUMOylates TPR1. It has been previously established that the SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE 1 (SIZ1)-mediated SUMOylation of TPR1 represses the immune-related function of TPR1. Consistent with this notion, the hyper-SUMOylated TPR1 in nua-3 leads to upregulated expression of TPR1 target genes and compromised TPR1-mediated disease resistance. Taken together, our work uncovers a mechanism by which NUA positively regulates plant defense responses by coordination with ESD4 to deSUMOylate TPR1. Our findings, together with previous studies, reveal a regulatory module in which SIZ1 and NUA/ESD4 control the homeostasis of TPR1 SUMOylation to maintain proper immune output.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligasas/metabolismo , Poro Nuclear/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sumoilación
11.
J Exp Clin Cancer Res ; 42(1): 234, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684630

RESUMEN

BACKGROUND: Neoadjuvant radiotherapy has been used as the standard treatment of colorectal cancer (CRC). However, radiotherapy resistance often results in treatment failure. To identify radioresistant genes will provide novel targets for combined treatments and prognostic markers. METHODS: Through high content screening and tissue array from CRC patients who are resistant or sensitive to radiotherapy, we identified a potent resistant gene SUMO specific peptidase 5 (SENP5). Then, the effect of SENP5 on radiosensitivity was investigated by CCK8, clone formation, comet assay, immunofluorescence and flow cytometric analysis of apoptosis and cell cycle to investigate the effect of SENP5 on radiosensitivity. SUMO-proteomic mass spectrometry combined with co-immunoprecipitation assay were used to identify the targets of SENP5. Patient-derived organoids (PDO) and xenograft (PDX) models were used to explore the possibility of clinical application. RESULTS: We identified SENP5 as a potent radioresistant gene through high content screening and CRC patients tissue array analysis. Patients with high SENP5 expression showed increased resistance to radiotherapy. In vitro and in vivo experiments demonstrated that SENP5 knockdown significantly increased radiosensitivity in CRC cells. SENP5 was further demonstrated essential for efficient DNA damage repair in homologous recombination (HR) dependent manner. Through SUMO mass spectrometry analysis, we characterized H2AZ as a deSUMOylation substrate of SENP5, and depicted the SUMOylation balance of H2AZ in HR repair and cancer resistance. By using PDO and PDX models, we found targeting SENP5 significantly increased the therapeutic efficacy of radiotherapy. CONCLUSION: Our findings revealed novel role of SENP5 in HR mediated DNA damage repair and cancer resistance, which could be applied as potent prognostic marker and intervention target for cancer radiotherapy.


Asunto(s)
Neoplasias Colorrectales , Proteómica , Humanos , Reparación del ADN por Recombinación , Recombinación Homóloga , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/radioterapia , Daño del ADN
12.
Mol Ther ; 31(10): 3052-3066, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37608549

RESUMEN

Acute kidney injury (AKI) is a critical clinical condition that causes kidney fibrosis, and it currently lacks specific treatment options. In this research, we investigate the role of the SENP1-Sirt3 signaling pathway and its correlation with mitochondrial dysfunction in proximal tubular epithelial cells (PTECs) using folic acid (FA) and ischemia-reperfusion-induced (IRI) AKI models. Our findings reveal that Sirt3 SUMOylation site mutation (Sirt3 KR) or pharmacological stimulation (metformin) protected mice against AKI and subsequent kidney inflammation and fibrosis by decreasing the acetylation level of mitochondrial SOD2, reducing mitochondrial reactive oxygen species (mtROS), and subsequently restoring mitochondrial ATP level, reversing mitochondrial morphology and alleviating cell apoptosis. In addition, AKI in mice was similarly alleviated by reducing mtROS levels using N-acetyl-L-cysteine (NAC) or MitoQ. Metabolomics analysis further demonstrated an increase in antioxidants and metabolic shifts in Sirt3 KR mice during AKI, compared with Sirt3 wild-type (WT) mice. Activation of the AMPK pathway using metformin promoted the SENP1-Sirt3 axis and protected PTECs from apoptosis. Hence, the augmented deSUMOylation of Sirt3 in mitochondria, activated through the metabolism-related AMPK pathway, protects against AKI and subsequently mitigated renal inflammation and fibrosis through Sirt3-SOD2-mtROS, which represents a potential therapeutic target for AKI.

13.
Cell Rep ; 42(4): 112339, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37014752

RESUMEN

The rixosome and PRC1 silencing complexes are associated with deSUMOylating and deubiquitinating enzymes, SENP3 and USP7, respectively. How deSUMOylation and deubiquitylation contribute to rixosome- and Polycomb-mediated silencing is not fully understood. Here, we show that the enzymatic activities of SENP3 and USP7 are required for silencing of Polycomb target genes. SENP3 deSUMOylates several rixosome subunits, and this activity is required for association of the rixosome with PRC1. USP7 associates with canonical PRC1 (cPRC1) and deubiquitinates the chromodomain subunits CBX2 and CBX4, and inhibition of USP activity results in disassembly of cPRC1. Finally, both SENP3 and USP7 are required for Polycomb- and rixosome-dependent silencing at an ectopic reporter locus. These findings demonstrate that SUMOylation and ubiquitination regulate the assembly and activities of the rixosome and Polycomb complexes and raise the possibility that these modifications provide regulatory mechanisms that may be utilized during development or in response to environmental challenges.


Asunto(s)
Núcleo Celular , Complejo Represivo Polycomb 1 , Peptidasa Específica de Ubiquitina 7/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Ubiquitinación , Núcleo Celular/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166685, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889557

RESUMEN

There is increasing evidence that the crosstalk between podocytes and glomerular endothelial cells (GECs) exacerbates the progression of diabetic kidney disease (DKD). Here, we investigated the underlying role of SUMO specific peptidase 6 (SENP6) in this crosstalk. In the diabetic mice, SENP6 was decreased in glomerular tissues and its knockdown further exacerbated glomerular filtration barrier injury. In the mouse podocyte cell line MPC5 cells, SENP6 overexpression reversed HG-induced podocyte loss by suppressing the activation of Notch1 signaling. Notch1 intracellular domain (N1ICD) is the active form of Notch1. SENP6 upregulated the ubiquitination of N1ICD by deSUMOylating Notch1, thereby reducing N1ICD and suppressing Notch1 signaling activation in MPC5 cells. Endothelin-1 (EDN1) is a protein produced by podocytes and has been reported to promote GEC dysfunction. The supernatant from HG-treated MPC5 cells induced mitochondrial dysfunction and surface layer injury in GECs, and the supernatant from SENP6-deficient podocytes further exacerbated the above GEC dysfunction, while this trend was reversed by an EDN1 antagonist. The following mechanism study showed that SENP6 deSUMOylated KDM6A (a histone lysine demethylase) and then decreased the binding potency of KDM6A to EDN1. The latter led to the upregulation of H3K27me2 or H3K27me3 of EDN1 and suppressed its expression in podocytes. Taken together, SENP6 suppressed the HG-induced podocyte loss and ameliorated GEC dysfunction caused by crosstalk between podocytes and GECs, and the protective effect of SENP6 on DKD is attributed to its deSUMOylation activity.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Ratones , Animales , Podocitos/metabolismo , Nefropatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Diabetes Mellitus Experimental/metabolismo , Histona Demetilasas/metabolismo , Péptido Hidrolasas/metabolismo
15.
Kidney Dis (Basel) ; 8(5): 424-435, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36466072

RESUMEN

Background: Sepsis causes acute kidney injury (AKI) in critically ill patients, although the mechanisms underlying the pathophysiology are not fully understood. SUMO-specific proteases 3 (SENP3), a member of the deSUMOylating enzyme family, is known as a redox sensor and could regulate multiple cellular signaling pathways. However, the role of SENP3 in septic AKI remains unclear. Objectives: The purpose of this study was to investigate the role of SENP3 in lipopolysaccharide (LPS)-induced AKI model. Methods: C57BL/6 mice were given intraperitoneal injection of LPS (10 mg/kg). NRK-52E cells were treated with LPS in vitro. The SENP3 protein expression was analyzed by Western blotting. The levels of reactive oxygen species (ROS) in cells were measured using DCFH-DA. SENP3-siRNA or SENP3-plasmid was, respectively, transfected into NRK-52E cells to knock down or overexpress the SENP3 expression. Western blotting was performed to analyze the protein expression of cleaved caspase 3, cytochrome c, and dynamin-related protein 1 (Drp1). The mitochondrial membrane potential was measured using JC-1 assay kit. Co-immunoprecipitation was used to determine the interaction of Drp1 and SMUO2/3. Results: SENP3 protein expression was obviously increased in renal tissues from the mouse model of LPS-induced AKI. Accordingly, SENP3 expression was upregulated in NRK-52E cells treated with LPS in a ROS-dependent manner in vitro. Knockdown of SENP3 dramatically ameliorated LPS-induced apoptosis of NRK-52E cells, whereas overexpression of SENP3 further aggravated LPS-induced apoptosis of NRK-52E cells. Mechanistically, SENP3 triggered Drp1 recruitment to mitochondria by increasing the deSUMOylation of Drp1. Conclusion: SENP3 aggravated renal tubular epithelial cell apoptosis in LPS-induced AKI via Drp1 deSUMOylation manner.

16.
J Mol Biol ; 434(24): 167875, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36334780

RESUMEN

SUMO proteases or deSUMOylases regulate the lifetime of SUMO-conjugated targets in the cell by cleaving off the isopetidic bond between the substrate and the SUMO modifier, thus reversing the conjugation activity of the SUMO E3 ligases. In humans the deSUMOylating activity is mainly conducted by the SENP/ULP protease family, which is constituted of six members sharing a homologous catalytic globular domain. SENP6 and SENP7 are the most divergent members of the family and they show a unique SUMO2/3 isoform preference and a particular activity for dismantling polySUMO2 chains. Here, we present the crystal structure of the catalytic domain of human SENP7 bound to SUMO2, revealing structural key elements for the SUMO2 isoform specificity of SENP7. In particular, we describe the specific contacts between SUMO2 and a unique insertion in SENP7 (named Loop1) that is responsible for the SUMO2 isoform specificity. All the other interface contacts between SENP7 and SUMO2, including the SUMO2 C-terminal tail interaction, are conserved among members of the SENP/ULP family. Our data give insight into an evolutionary adaptation to restrict the deSUMOylating activity in SENP6 and SENP7 for the SUMO2/3 isoforms.


Asunto(s)
Endopeptidasas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación , Humanos , Cisteína Endopeptidasas/química , Endopeptidasas/química , Isoformas de Proteínas/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Especificidad por Sustrato
17.
Cell Mol Life Sci ; 79(7): 378, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739402

RESUMEN

SUMOylation is a post-translational modification essential to cell homeostasis. A tightly controlled equilibrium between SUMOylation and deSUMOylation processes is also critical to the neuronal function including neurotransmitter release and synaptic transmission and plasticity. Disruption of the SUMOylation homeostasis in neurons is associated with several neurological disorders. The balance between the SUMOylation and deSUMOylation of substrate proteins is maintained by a group of deSUMOylation enzymes called SENPs. We previously showed that the activation of type 5 metabotropic glutamate receptors (mGlu5R) first triggers a rapid increase in synaptic SUMOylation and then upon the sustained activation of these receptors, the deSUMOylase activity of SENP1 allows the increased synaptic SUMOylation to get back to basal levels. Here, we combined the use of pharmacological tools with subcellular fractionation and live-cell imaging of individual hippocampal dendritic spines to demonstrate that the synaptic accumulation of the deSUMOylation enzyme SENP1 is bidirectionally controlled by the activation of type 1 mGlu1 and mGlu5 receptors. Indeed, the pharmacological blockade of mGlu1R activation during type 1 mGluR stimulation leads to a faster and greater accumulation of SENP1 at synapses indicating that mGlu1R acts as a brake to the mGlu5R-dependent deSUMOylation process at the post-synapse. Altogether, our findings reveal that type 1 mGluRs work in opposition to dynamically tune the homeostasis of SUMOylation at the mammalian synapse.


Asunto(s)
Receptores de Glutamato Metabotrópico , Sumoilación , Animales , Hipocampo/metabolismo , Mamíferos/metabolismo , Neuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo
18.
Int J Biol Sci ; 18(5): 2186-2201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342335

RESUMEN

TNBC is characterized by high incidence of visceral metastasis and lacks effective clinical targets. This study aims to delineate the molecular mechanisms of SENP1 in TNBC invasion and metastasis. By using IHC to test the SENP1 expression in TNBC tissues, we analyzed the relationship between SENP1 expression and TNBC prognosis. We showed that SENP1 expression was higher in TNBC tumor tissues and related to TNBC prognosis, supporting SENP1 as an independent risk factor. High expression of SENP1 was significantly associated with histologic grade and tumor lymph node invasion. Intriguingly, the expression levels of SENP1 in TNBC tumors were significantly correlated with that of CSN5, GATA1 and ZEB1. Importantly, SENP1 promoted TNBC cell migration and invasion by regulating ZEB1 deubiquitination and expression through CSN5. Further studies showed that deSUMOylation at lysine residue K137 of GATA1 enhanced the binding of GATA1 to the CSN5 promoter and transactivated CSN5 expression. In addition, we showed that ZEB1 is deubiquitinated at lysine residue K1108. Our in vivo studies also indicated that reduction in SENP1 expression upregulated GATA1 SUMOylation, and thus resulted in decreased expression of CSN5 and ZEB1 in the tumor microenvironment, which decelerated TNBC progression and metastasis. SENP1 promoted CSN5-mediated ZEB1 protein degradation via deSUMOylation of GATA1, and thus influenced TNBC progression. These findings suggest that SENP1 could be utilized as a potential target for blockade of TNBC development and thus provide a totally new approach for TNBC treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Complejo del Señalosoma COP9 , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Factor de Transcripción GATA1/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Péptido Hidrolasas , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral
19.
Theranostics ; 11(15): 7450-7470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34158860

RESUMEN

Rationale: Annexin-A1 (ANXA1) has previously been proposed to play a crucial role in neuronal apoptosis during ischemic stroke injury. Our recent study demonstrated that ANXA1 was modified by SUMOylation, and that this modification was greatly weakened after cerebral ischemia, but its effect on neuronal death and the underlying mechanism have not been fully elucidated. Methods: Mice subjected to middle cerebral artery occlusion were established as the animal model and primary cultured neurons treated with oxygen-glucose deprivation and reperfusion was established as the cell model of ischemic stroke. The Ni2+-NTA agarose affinity pull-down assay was carried out to determine the SUMOylation level of ANXA1. Co-immunoprecipitation assays was utilized to explore the protein interaction. Immunoblot analysis, quantitative real-time PCR, Luciferase reporter assay were performed to identify the regulatory mechanism. LDH release and TUNEL staining was performed to investigate the neuronal cytotoxicity and apoptosis, respectively. Results: In this study, we identified the deSUMOylating enzyme sentrin/SUMO-specific protease 6 (SENP6) as a negative regulator of ANXA1 SUMOylation. Notably, we found that SENP6-mediated deSUMOylation of ANXA1 induced its nuclear translocation and triggered neuronal apoptosis during cerebral ischemic injury. A mechanistic study demonstrated that SENP6-mediated deSUMOylation of ANXA1 promoted TRPM7- and PKC-dependent phosphorylation of ANXA1. Furthermore, blocking the deSUMOylation of ANXA1 mediated by SENP6 inhibited the transcriptional activity of p53, decreased Bid expression, suppressed caspase-3 pathway activation and reduced the apoptosis of primary neurons subjected to oxygen-glucose deprivation and reperfusion. More importantly, SENP6 inhibition by overexpression of a SENP6 catalytic mutant in neurons resulted in significant improvement in neurological function in the mouse model of ischemic stroke. Conclusions: Taken together, the results of this study identified a previously unidentified function of SENP6 in neuronal apoptosis and strongly indicated that SENP6 inhibition may provide therapeutic benefits for cerebral ischemia.


Asunto(s)
Anexina A1/metabolismo , Apoptosis , Núcleo Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Neuronas/metabolismo , Daño por Reperfusión/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/patología , Accidente Cerebrovascular Isquémico/patología , Ratones , Neuronas/patología , Daño por Reperfusión/patología
20.
Cancers (Basel) ; 13(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923236

RESUMEN

SUMOylation is a reversible post-translational modification (PTM) involving a covalent attachment of small ubiquitin-related modifier (SUMO) proteins to substrate proteins. SUMO-specific proteases (SENPs) are cysteine proteases with isopeptidase activity facilitating the de-conjugation of SUMO proteins and thus participating in maintaining the balance between the pools of SUMOylated and unSUMOylated proteins and in SUMO recycling. Several studies have reported that SENPs' aberrant expression is associated with the development and progression of cancer. In this review, we will discuss the role of SENPs in the pathogenesis of cancer, focusing on DNA repair and the cell cycle-cellular pathways malfunctioning in most cancer cells. The plausible role of SENPs in carcinogenesis resulted in the design and development of their inhibitors, including synthetic protein-based, peptide-based, and small molecular weight inhibitors, as well as naturally occurring compounds. Computational methods including virtual screening have been implemented to identify a number of lead structures in recent years. Some inhibitors suppressed the proliferation of prostate cancer cells in vitro and in vivo, confirming that SENPs are suitable targets for anti-cancer treatment. Further advances in the development of SENP-oriented inhibitors are anticipated toward SENP isoform-specific molecules with therapeutic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA