RESUMEN
Patterns of genetic variation reflect interactions among microevolutionary forces that vary in strength with changing demography. Here, patterns of variation within and among samples of the mouthbrooding gafftopsail catfish (Bagre marinus, Family Ariidae) captured in the U.S. Atlantic and throughout the Gulf of Mexico were analyzed using genomics to generate neutral and non-neutral SNP data sets. Because genomic resources are lacking for ariids, linkage disequilibrium network analysis was used to examine patterns of putatively adaptive variation. Finally, historical demographic parameters were estimated from site frequency spectra. The results show four differentiated groups, corresponding to the (1) U.S. Atlantic, and the (2) northeastern, (3) northwestern, and (4) southern Gulf of Mexico. The non-neutral data presented two contrasting signals of structure, one due to increases in diversity moving west to east and north to south, and another to increased heterozygosity in the Atlantic. Demographic analysis suggested that recently reduced long-term effective population size in the Atlantic is likely an important driver of patterns of genetic variation and is consistent with a known reduction in population size potentially due to an epizootic. Overall, patterns of genetic variation resemble that of other fishes that use the same estuarine habitats as nurseries, regardless of the presence/absence of a larval phase, supporting the idea that adult/juvenile behavior and habitat are important predictors of contemporary patterns of genetic structure.
RESUMEN
Surveys of patterns of genetic variation in natural sympatric and allopatric populations of recently diverged species are necessary to understand the processes driving intra- and interspecific diversification. The South American moths Cactoblastis cactorum, Cactoblastis doddi and Cactoblastis bucyrus are specialized in the use of cacti as host plants. These species have partially different geographic ranges and differ in patterns of host plant use. However, there are areas that overlap, particularly, in northwestern Argentina, where they are sympatric. Using a combination of genome-wide SNPs and mitochondrial data we assessed intra and interspecific genetic variation and investigated the relative roles of geography and host plants on genetic divergence. We also searched for genetic footprints of hybridization between species. We identified three well delimited species and detected signs of hybridization in the area of sympatry. Our results supported a hypothetical scenario of allopatric speciation in the generalist C. cactorum and genetic interchange during secondary geographic contact with the pair of specialists C. bucyrus and C. doddi that probably speciated sympatrically. In both cases, adaptation to new host plants probably played an important role in speciation. The results also suggested the interplay of geography and host plant use as drivers of divergence and limiting gene flow at intra and interspecific levels.
Asunto(s)
Mariposas Nocturnas , Simpatría , Animales , Flujo Génico , Especiación Genética , Genómica , Hibridación Genética , Mariposas Nocturnas/genéticaRESUMEN
Integration of multiple approaches is key to understand the evolutionary processes of local adaptation and speciation. Reptiles have successfully colonized desert environments, that is, extreme and arid conditions that constitute a strong selective pressure on organisms. Here, we studied genomic, physiological and morphological variations of the lizard Liolaemus fuscus to detect adaptations to the Atacama Desert. By comparing populations of L. fuscus inhabiting the Atacama Desert with populations from the Mediterranean forests from central Chile, we aimed at characterizing features related to desert adaptation. We combined ddRAD sequencing with physiological (evaporative water loss, metabolic rate and selected temperature) and morphological (linear and geometric morphometrics) measurements. We integrated the genomic and phenotypic data using redundancy analyses. Results showed strong genetic divergence, along with a high number of fixed loci between desert and forest populations. Analyses detected 110 fixed and 30 outlier loci located within genes, from which 43 were in coding regions, and 12 presented non-synonymous mutations. The candidate genes were associated with cellular membrane and development. Desert lizards presented lower evaporative water loss than those from the forest. Morphological data showed that desert lizards had smaller body size, different allometry, larger eyeballs and more dorsoventrally compressed heads. Our results suggest incipient speciation between desert and forest populations. The adaptive signal must be cautiously interpreted since genetic drift could also contribute to the divergence pattern. Nonetheless, we propose water and resource availability, and changes in habitat structure, as the most relevant challenges for desert reptiles. This study provides insights of the mechanisms that allow speciation as well as desert adaptation in reptiles at multiple levels, and highlights the benefit of integrating independent evidence.
Asunto(s)
Lagartos , Adaptación Fisiológica/genética , Animales , Clima Desértico , Ecosistema , Lagartos/genética , AguaRESUMEN
The reconstruction of relationships within recently radiated groups is challenging even when massive amounts of sequencing data are available. The use of restriction site-associated DNA sequencing (RAD-Seq) to this end is promising. Here, we assessed the performance of RAD-Seq to infer the species-level phylogeny of the rapidly radiating genus Cereus (Cactaceae). To examine how the amount of genomic data affects resolution in this group, we used datasets and implemented different analyses. We sampled 52 individuals of Cereus, representing 18 of the 25 species currently recognized, plus members of the closely allied genera Cipocereus and Praecereus, and other 11 Cactaceae genera as outgroups. Three scenarios of permissiveness to missing data were carried out in iPyRAD, assembling datasets with 30% (333 loci), 45% (1440 loci), and 70% (6141 loci) of missing data. For each dataset, Maximum Likelihood (ML) trees were generated using two supermatrices, i.e., only SNPs and SNPs plus invariant sites. Accuracy and resolution were improved when the dataset with the highest number of loci was used (6141 loci), despite the high percentage of missing data included (70%). Coalescent trees estimated using SVDQuartets and ASTRAL are similar to those obtained by the ML reconstructions. Overall, we reconstruct a well-supported phylogeny of Cereus, which is resolved as monophyletic and composed of four main clades with high support in their internal relationships. Our findings also provide insights into the impact of missing data for phylogeny reconstruction using RAD loci.
Asunto(s)
Evolución Biológica , Cactaceae/genética , Genoma de Planta , Análisis de Secuencia de ADN , Secuencia de Bases , Bases de Datos Genéticas , Sitios Genéticos , Especiación Genética , Funciones de Verosimilitud , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente PrincipalRESUMEN
Hybridization and introgression between species in contact/hybrid zones provide important insight into the genetic and ecological mechanisms of speciation. Cactaceae represents the most important radiation of true succulent angiosperms in the New World. This diversification continues to date, with species experiencing few intrinsic barriers to gene flow and the frequent occurrence of natural hybridization. Here, we used RAD-Seq single-nucleotide polymorphism (SNP) data to investigate the genetic architecture of hybridization in four hybrid zones hosting Melocactus concinnus and four congeneric species (M. ernestii, M. glaucescens, M. paucispinus, and M. zehntneri). Our results revealed that M. concinnus is highly promiscuous in sympatric areas and hybridizes with various species distributed in Morro do Chapéu (Diamantina Plateau, Bahia), eastern Brazil. However, the contemporary genomic introgression among the investigated species is very low (c. 2-5%), confirming that even in the face of hybridization, Melocactus species maintain their genetic integrity. The genomic cline approach showed a large fraction of loci deviating from a model of neutral introgression, where most of the loci are consistent with selection favoring parental genotypes. Our results suggest the occurrence of weak premating but strong postmating reproductive isolation in the analyzed cactus species. Furthermore, as most of the Melocactus species are restricted in distribution, hybridization might negatively affect their integrity if hybrids replace the parental species.
Asunto(s)
Cactaceae/genética , Hibridación Genética , Brasil , Flujo Génico , Introgresión Genética , Polimorfismo de Nucleótido Simple , Aislamiento Reproductivo , SimpatríaRESUMEN
Recurrently invading pests provide unique challenges for pest management, but also present opportunities to utilize genomics to understand invasion dynamics and inform regulatory management through pathway analysis. In the southern United States, the Mexican fruit fly Anastrepha ludens is such a pest, and its incursions into Texas and California represent major threats to the agricultural systems of those regions. We developed a draft genome assembly for A. ludens, conducted range-wide population genomics using restriction site-associated DNA sequencing, and then developed and demonstrated a panel of highly differentiated diagnostic SNPs for source determination of intercepted flies in this system. Using 2,081 genomewide SNPs, we identified four populations across the range of A. ludens, corresponding to western Mexico, eastern Mexico/Texas, Guatemala/Belize/Honduras, and Costa Rica/Panama, with some intergradation present between clusters, particularly in Central America. From this population genomics framework, we developed a diagnostic panel of 28 highly differentiated SNPs that were able to recreate the genomewide population structure in this species. We demonstrated this panel on a set of test specimens, including specimens intercepted as part of regular trapping surveillance in Texas and California, and we were able to predict populations of origin for these specimens. This methodology presents a highly applied use of genomic techniques and can be implemented in any group of recurrently invading pests.
RESUMEN
The West Indian avifauna has provided fundamental insights into island biogeography, taxon cycles, and the evolution of avian behavior. Our interpretations, however, should rely on robust hypotheses of evolutionary relationships and consistent conclusions about taxonomic status in groups with many endemic island populations. Here we present a phylogenetic study of the West Indian thrashers, tremblers, and allies, an assemblage of at least 5 species found on 29 islands, including what is considered the Lesser Antilles' only avian radiation. We improve on previous phylogenetic studies of this group by using double-digest restriction site-associated DNA sequencing (ddRAD-seq) to broadly sample loci scattered across the nuclear genome. A variety of analyses, based on either nucleotide variation in 2223 loci recovered in all samples or at 13,282 loci confidently scored as present or absent in all samples, converged on a single well-supported phylogenetic hypothesis. Results indicate that the resident West Indian taxa form a monophyletic group, exclusive of the Neotropical-Nearctic migratory Gray Catbird Dumetella carolinensis, which breeds in North America; this outcome differs from earlier studies suggesting that Gray Catbird was nested within a clade of island resident species. Thus, our findings imply a single colonization of the West Indies without the need to invoke a subsequent 'reverse colonization' of the mainland by West Indian taxa. Additionally, our study is the first to sample both endemic subspecies of the endangered White-breasted Thrasher Ramphocinclus brachyurus. We find that these subspecies have a long history of evolutionary independence with no evidence of gene flow, and are as genetically divergent from each other as other genera in the group. These findings support recognition of R. brachyurus (restricted to Martinique) and the Saint Lucia Thrasher R. sanctaeluciae as two distinct, single-island endemic species, and indicate the need to re-evaluate conservation plans for these taxa. Our results demonstrate the utility of phylogenomic datasets for generating robust systematic hypotheses.
Asunto(s)
Secuencia Conservada , Passeriformes/clasificación , Passeriformes/genética , Filogenia , Filogeografía , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Mapeo Restrictivo , Análisis de Secuencia de ADN , Especificidad de la Especie , Indias OccidentalesRESUMEN
BACKGROUND: Arapaima gigas (Schinz, 1822) is the largest freshwater scaled fish in the world, and an emerging species for tropical aquaculture development. Conservation of the species, and the expansion of aquaculture requires the development of genetic tools to study polymorphism, differentiation, and stock structure. This study aimed to investigate genomic polymorphism through ddRAD sequencing, in order to identify a panel of single nucleotide polymorphisms (SNPs) and to simultaneously assess genetic diversity and structure in wild (from rivers Amazon, Solimões, Tocantins and Araguaia) and captive populations. RESULTS: Compared to many other teleosts, the degree of polymorphism in A. gigas was low with only 2.3% of identified RAD-tags (135 bases long) containing SNPs. A panel of 393 informative SNPs was identified and screened across the five populations. Higher genetic diversity indices (number of polymorphic loci and private alleles, Shannon's Index and HO) were found in populations from the Amazon and Solimões, intermediate levels in Tocantins and Captive, and very low levels in the Araguaia population. These results likely reflect larger population sizes from less urbanized environments in the Amazon basin compared to Araguaia. Populations were significantly differentiated with pairwise FST values ranging from 0.086 (Amazon × Solimões) to 0.556 (Amazon × Araguaia). Mean pairwise relatedness among individuals was significant in all populations (P < 0.01), reflecting a degree of inbreeding possibly due to severe depletion of natural stocks, the species sedentary behaviour and possible sampling biases. Although Mantel test was not significant (P = 0.104; R2 = 0.65), Bayesian analysis in STRUCTURE and discriminant analysis of principal components (DAPC) showed populations of Amazon and Solimões to be genetically differentiated from Araguaia, with Tocantins comprising individuals from both identified stocks. CONCLUSIONS: This relatively rapid genotyping by sequencing approach proved to be successful in delineating arapaima stocks. The approach and / or SNP panels identified should prove valuable for more detailed genetic studies of arapaima populations, including the elucidation of the genetic status of described discrete morphotypes and aid in delivery of conservation programs to maintain genetic diversity in reservoirs across the Amazon region.
Asunto(s)
Peces/genética , Variación Genética , Ríos , Animales , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Polimorfismo GenéticoRESUMEN
Some South American poison frogs (Dendrobatidae) are chemically defended and use bright aposematic colors to warn potential predators of their unpalatability. Aposematic signals are often frequency-dependent where individuals deviating from a local model are at a higher risk of predation. However, extreme diversity in the aposematic signal has been documented in poison frogs, especially in Oophaga. Here, we explore the phylogeographic pattern among color-divergent populations of the Little Devil poison frog Oophaga sylvatica by analyzing population structure and genetic differentiation to evaluate which processes could account for color diversity within and among populations. With a combination of PCR amplicons (three mitochondrial and three nuclear markers) and genome-wide markers from a double-digested RAD (ddRAD) approach, we characterized the phylogenetic and genetic structure of 199 individuals from 13 populations (12 monomorphic and 1 polymorphic) across the O. sylvatica distribution. Individuals segregated into two main lineages by their northern or southern latitudinal distribution. A high level of genetic and phenotypic polymorphism within the northern lineage suggests ongoing gene flow. In contrast, low levels of genetic differentiation were detected among the southern lineage populations and support recent range expansions from populations in the northern lineage. We propose that a combination of climatic gradients and structured landscapes might be promoting gene flow and phylogenetic diversification. Alternatively, we cannot rule out that the observed phenotypic and genomic variations are the result of genetic drift on near or neutral alleles in a small number of genes.