Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Intervalo de año de publicación
1.
Dev Comp Immunol ; 152: 105124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145864

RESUMEN

Cell-mediated cytotoxicity (CMC) is essential in eradicating virus-infected cells, involving CD8+ T lymphocytes (CTLs) and natural killer (NK) cells, through the activation of different pathways. This immune response is well-studied in mammals but scarcely in teleost fish. Our aim was to investigate the adaptive CMC using head-kidney (HK) cells from European sea bass infected at different times with nodavirus (NNV), as effector cells, and the European sea bass brain cell line (DLB-1) infected with different NNV genotypes, as target cells. Results showed low and unaltered innate cytotoxic activity through the infection time. However, adaptive CMC against RGNNV and SJNNV/RGNNV-infected target cells increased from 7 to 30 days post-infection, peaking at 15 days, demonstrating the specificity of the cytotoxic activity and suggesting the involvement of CTLs. At transcriptomic level, we observed up-regulation of genes related to T cell activation, perforin/granzyme and Fas/FasL effector pathways as well as apoptotic cell death. Further studies are necessary to understand the adaptive role of European sea bass CTLs in the elimination of NNV-infected cells.


Asunto(s)
Antineoplásicos , Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Nodaviridae/fisiología , Inmunidad Innata , Expresión Génica , Riñón , Mamíferos/genética
2.
Mol Imaging Biol ; 25(5): 844-856, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37715090

RESUMEN

PURPOSE: In vivo immune cell tracking using MRI can be a valuable tool for studying the mechanisms underlying successful cancer therapies. Current cell labeling methods using superparamagnetic iron oxide (SPIO) lack the persistence to track the fate and location of transplanted cells long-term. Magnetospirillum magneticum is a commercially available, iron-producing bacterium that can be taken up by and live harmoniously within mammalian cells as magneto-endosymbionts (MEs). MEs have shown promise as labeling agents for in vivo stem and cancer cell tracking but have yet to be evaluated in immune cells. This pilot study examined ME labeling in myeloid-derived suppressor cells (MDSCs), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) and its effects on cell purity, function, and MRI contrast. PROCEDURES: MDSCs, CTLs, and DCs were incubated with MEs at various ME labeling ratios (MLR), and various biological metrics and iron uptake were assessed. For in vivo imaging, MDSCs were labeled overnight with either MEs or SPIO (Molday ION Rhodamine B) and injected into C3 tumor-bearing mice via tail vein injection 24 days post-implant and scanned daily with MRI for 1 week to assess cellular quantification. RESULTS: Following incubations, MDSCs contained > 0.6 pg Fe/cell. CTLs achieved Fe loading of < 0.5 pg/cell, and DCs achieved Fe loading of ~ 1.4 pg/cell. The suppressive functionality of MDSCs at 1000 MLR was not affected by ME labeling but was affected at 2000 MLR. Markers of CTL dysfunction were not markedly affected by ME labeling nor were DC markers. In vivo data demonstrated that the MDSCs labeled with MEs generated sufficient contrast to be detectable using TurboSPI, similar to SPIO-labeled cells. CONCLUSIONS: Cells can be labeled with sufficient numbers of MEs to be detectable with MRI without compromising cell viability. Care must be taken at higher concentrations of MEs, which may affect some cell types' functional activity and/or morphology. Immune cells with minimal phagocytic behavior have much lower iron content per cell after incubation with MEs vs SPIO; however, MEs can successfully be used as a contrast agent for phagocytic immune cells.

3.
Front Immunol ; 14: 1104730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205114

RESUMEN

Blockade of surface co-inhibitory receptor programmed cell death-1 (PD-1; CD279) has been established as an important immunotherapeutic approach to treat malignancies. On a cellular level, PD-1 is demonstrated to be of particular importance in inhibiting differentiation and effector function of cytotoxic Tc1 cells (CTLs). Nevertheless, the role of PD-1 in modulating interleukin (IL)-17-producing CD8+ T-cells (Tc17 cells), which generally display suppressed cytotoxic nature, is not well understood. To evaluate the impact of PD-1 in Tc17 responses, we examined its functioning using different in vitro and in vivo models. Upon activation of CD8+ T-cells in Tc17 environment, we found that PD-1 was rapidly expressed on the surface of CD8+ T-cells and triggered a T-cell-internal mechanism that inhibited the expression of IL-17 and Tc17-supporting transcription factors pSTAT3 and RORγt. Expression of type17-polarising cytokine IL-21 and the receptor for IL-23 were also suppressed. Intriguingly, adoptively transferred, PD-1-/- Tc17 cells were highly efficient in rejection of established B16 melanoma in vivo and displayed Tc1 like characteristics ex vivo. When using IL-17A-eGFP reporter mice for in vitro fate tracking, IL-17A-eGFP expressing cells lacking PD-1 signaling upon re-stimulation with IL-12 quickly acquired Tc1 characteristics such as IFN-γ, and granzyme B expression, implicating lineage independent upregulation of CTL-characteristics that are needed for tumor control. In line with plasticity characteristics, absence of PD-1 signaling in Tc17 cells increased the expression of the stemness and persistence-associated molecules TCF1 and BCL6. Thus, PD-1 plays a central role in the specific suppression of Tc17 differentiation and its plasticity in relation to CTL-driven tumor rejection, which provides further explanation as to why the blockade of PD-1 is such an efficient therapeutic target for inducing tumor rejection.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-17 , Ratones , Animales , Linfocitos T CD8-positivos/metabolismo , Interleucina-17/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Diferenciación Celular , Linfocitos T Citotóxicos/metabolismo
4.
Exp Hematol Oncol ; 12(1): 35, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029450

RESUMEN

INTRODUCTION: Circulating monocytic myeloid-derived suppressive cells (M-MDSCs) are implicated as a poor prognostic factor and cause CAR T-cell failure in diffuse large B-cell lymphoma (DLBCL). Triggering receptors expressed on myeloid cells 2 (TREM2) are a transmembrane glycoprotein that polarize macrophages to anti-inflammation phenotype but have never been explored on M-MDSCs. This study aims to elucidate the expression and clinical impact of surface TREM2 on circulating M-MDSCs derived from DLBCL adults. METHODS: This prospective, observational study enrolled 100 adults with newly diagnosed and treatment-naïve DLBCL from May 2019 to October 2021. Human circulating M-MDSCs were obtained from freshly isolated peripheral blood, and each patient's surface-TREM2 level on M-MDSCs was normalized via a healthy control at the same performance of flow-cytometry analysis. Murine MDSCs derived from bone marrow (BM-MDSCs) were adopted to assess the link between Trem2 and cytotoxic T lymphocytes. RESULTS: More circulating M-MDSCs at diagnosis of DLBCL predicted worse progression-free (PFS) and overall survival (OS). Patients with higher IPI scores, bone marrow involvement, or lower absolute counts of CD4+ or CD8+ T cells in PB had significantly higher normalized TREM2 levels on M-MDSCs. Additionally, normalized TREM2 levels on M-MDSCs could be grouped into low (< 2%), medium (2-44%), or high (> 44%) levels, and a high normalized TREM2 level on M-MDSCs was proven as an independent prognostic factor for both PFS and OS via multivariate Cox regression analysis and associated with worst PFS and OS. Interestingly, normalized levels of surface TREM2 on M-MDSCs were negatively associated with absolute counts of PB CD8+ T cells and positively correlated with levels of intracellular arginase 1 (ARG1) within M-MDSCs. Wild-type BM-MDSCs had significantly higher mRNA levels of Arg1 and showed more prominent ability to suppress the proliferation of co-cultured CD8+ T cells than BM-MDSCs from Trem2 knockout mice, and the suppressive ability could be impaired by adding Arg1 inhibitors (CB1158) or supplementing L-arginine. CONCLUSION: In treatment-naïve DLBCL adults, a high surface-TREM2 level on circulating M-MDSCs is a poor prognostic factor for both PFS and OS and warrants further investigation for its potential as a novel target in immunotherapy.

5.
Hum Immunol ; 84(2): 106-112, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36379724

RESUMEN

In order to develop a therapeutic target for T cells, it is necessary to amplify T cells and increase activity through antigen-presenting cells (APCs) expressing an intracellular cancer antigen. Although dendritic cells are frequently used as APCs, producing dendritic cells is costly and time-consuming. In addition, as dendritic cells are attached cells, they are not suitable for mass production for use as immune cell therapy. On the other hand, B cells are non-adherent floating cells, and thus can easily be cultured in suspension systems. As such, B cells can be considered as suitable substance cells for the development of immune cell therapeutics.B cells lack the antigen-presenting ability of dendritic cells. Therefore, to use B cells as APCs, we previously reported a technology that can be used which simply and effectively produces anti-viral T cells in vitro by activating B cells with α-galactosylceramide (α-GalCer). To apply this technology to anti-cancer treatment, Wilms tumor 1, the most representative cancer antigen expressed in various cancers, was selected. Wilms tumor 1 (WT1) was used to produce anti-cancer (anti-WT1) T cells using active B cells as APCs, and their respective activities were investigated.


Asunto(s)
Linfocitos T Citotóxicos , Proteínas WT1 , Humanos , Células Presentadoras de Antígenos , Células Dendríticas
6.
Front Immunol ; 13: 1015283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439177

RESUMEN

Purpose: This study aims to investigate the prognostic value of composition and spatial architecture of tumor-infiltrating lymphocytes (TILs) as well as PDL1 expression on TILs subpopulations in nasopharyngeal carcinoma (NPC). Methods: A total of 121 patients with NPC were included and divided into two groups: favorable (n = 68) and unfavorable (n = 53). The archived tumor tissues of the included patients were retrieved, and a tissue microarray was constructed. The density and spatial distribution of TILs infiltration were analyzed using the multiplex fluorescent immunohistochemistry staining for CD3, CD4, CD8, Foxp3, cytokeratin (CK), PDL1, and 4',6-diamidino-2-phenylindole (DAPI). The infiltration density of TILs subpopulations and PDL1 expression were compared between the two groups. The Gcross function was calculated to quantify the relative proximity of any two types of cells. The Cox proportional hazards regression model was used to identify factors associated with overall survival (OS) and disease-free survival (DFS). Results: The densities of regulatory T-cells (Tregs), effector T-cells (Teffs), PDL1+ Tregs, and PDL1+ Teffs were significantly higher in patients with unfavorable outcomes. PDL1 expression on tumor cells (TCs) or overall TILs was not associated with survival. Multivariate analysis revealed that higher PDL1+ Tregs infiltration density was independently associated with inferior OS and DFS, whereas Tregs infiltration density was only a prognostic marker for DFS. Spatial analysis revealed that unfavorable group had significantly stronger Tregs and PDL1+ Tregs engagement in the proximity of TCs and cytotoxic T lymphocyte (CTLs). Gcross analysis further revealed that Tregs and PDL1+ Tregs were more likely to colocalize with CTLs. Moreover, increased GTC : Treg (Tregs engagement surrounding TCs) and GCTL : PDL1+ Treg were identified as independent factors correlated with poor outcomes. Conclusion: TILs have a diverse infiltrating pattern and spatial distribution in NPC. Increased infiltration of Tregs, particularly PDL1+ Tregs, as well as their proximity to TCs and CTLs, correlates with unfavorable outcomes, implying the significance of intercellular immune regulation in mediating disease progression.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Linfocitos T Reguladores , Linfocitos Infiltrantes de Tumor , Progresión de la Enfermedad
7.
Curr Oncol ; 29(7): 4902-4913, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35877249

RESUMEN

Neoadjuvant chemotherapy (NACT) was developed with the aims of shrinking tumors or stopping cancer cells from spreading before surgery. Unfortunately, not all breast cancer patients will benefit from NACT, and thus, patients must weigh the risks and benefits of treatment prior to the initiation of therapy. Currently, the data for predicting the efficacy of NACT is limited. Molecular testing, such as Oncotype DX, MammaPrint, and Curebest 95GC, have been developed to assist which breast cancer patients will benefit from the treatment. Patients with an increased level of Human Leukocyte Antigen-DR isotype, tumor-infiltrating lymphocytes, Fizzy-related protein homolog, and a decreased level of tumor-associated macrophages appear to benefit most from NACT.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/patología , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología
8.
Adv Mater ; 34(23): e2109517, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35388551

RESUMEN

Systemic immunosuppression mediated by tumor-derived exosomes is an important cause for the resistance of immune checkpoint blockade (ICB) therapy. Herein, self-adaptive platelet (PLT) pharmacytes are engineered to mediate cascaded delivery of exosome-inhibiting siRNA and anti-PD-L1 (aPDL1) toward synergized antitumor immunity. In the pharmacytes, polycationic nanocomplexes (NCs) assembled from Rab27 siRNA (siRab) and a membrane-penetrating polypeptide are encapsulated inside the open canalicular system of PLTs, and cytotoxic T lymphocytes (CTLs)-responsive aPDL1 nanogels (NGs) are covalently backpacked on the PLT surface. Upon systemic administration, the pharmacytes enable prolonged blood circulation and active accumulation to tumors, wherein PLTs are activated to liberate siRab NCs, which efficiently transfect tumor cells, silence Rab27a, and inhibit exosome secretion. The immunosuppression is thus relieved, leading to the activation, proliferation, and tumoral infiltration of cytotoxic T cells, which trigger latent aPDL1 release. As such, the competitive aPDL1 exhaustion by PD-L1-expressing exosomes is minimized to sensitize ICB. Synergistically, siRab and aPDL1 induce strong antitumor immunological response and memory against syngeneic murine melanoma. This study reports a bioinspired mechanism to resolve the blood circulation/cell internalization contradiction of polycationic siRNA delivery systems, and renders an enlightened approach for the spatiotemporal enhancement of antitumor immunity.


Asunto(s)
Inmunoterapia , Melanoma , Animales , Línea Celular Tumoral , Melanoma/patología , Ratones , ARN Interferente Pequeño/genética , Linfocitos T Citotóxicos , Microambiente Tumoral
9.
Mol Ther Oncolytics ; 24: 77-86, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35024435

RESUMEN

To develop effective adoptive cell transfer therapy using T cell receptor (TCR)-engineered T cells, it is critical to isolate tumor-reactive TCRs that have potent anti-tumor activity. In humans, tumor-infiltrating lymphocytes (TILs) have been reported to contain CD8+PD-1+ T cells that express tumor-reactive TCRs. Characterization of tumor reactivity of TILs from non-human primate tumors could improve anti-tumor activity of TCR-engineered T cells in preclinical research. In this study, we sought to isolate TCR genes from CD8+PD-1+ T cells among TILs in a cynomolgus macaque model of tumor transplantation in which the tumors were infiltrated with CD8+ T cells and were eventually rejected. We analyzed the repertoire of TCRα and ß pairs obtained from single CD8+PD-1+ T cells in TILs and circulating lymphocytes and identified multiple TCR pairs with high frequency, suggesting that T cells expressing these recurrent TCRs were clonally expanded in response to tumor cells. We further showed that the recurrent TCRs exhibited cytotoxic activity to tumor cells in vitro and potent anti-tumor activity in mice transplanted with tumor cells. These results imply that this tumor transplantation macaque model recapitulates key features of human TILs and can serve as a platform toward preclinical studies of non-human primate tumor models.

10.
J Clin Lab Anal ; 36(1): e24125, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34799871

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) as the most prominent type of esophageal cancer (EC) in developing countries encompasses a substantial contribution of cancer-related mortalities and morbidities. Cytotoxic T lymphocytes (CTLs) are the major subset of effector T cells against cancer. However, the microRNAs involved in the development and regulation of CTLs could be disrupted in cancers such as EC. METHODS: Here, we evaluated the population of IL-10, TGF-ß, IFN-γ, and IL-17a-producing CD3+CD8+ T cells, their association with the circulating levels of miR-21 and miR-29b, and their diagnostic and/or prognostic (after 160 weeks of follow-up) utilities in 34 ESCC patients (12 newly diagnosed: ND, 24 under-treatment: UT) and 34 matched healthy donors. RESULTS: The population of IL-10 and TGF-ß-producing CTLs (CD8+ Tregs) were considerably expanded, in addition to the overexpression of miR-21 in both groups (ND and UT) of ESCC patients, while the frequency of Tc17 and CD8+ Treg cells increased only in UT patients. The expression means of TGF-ß and IL-10 in CTLs were considered to be excellent biomarkers (1 ≥ area under the curve: AUC ≥0.9) in distinguishing ESCC patients and associated subgroups from healthy subjects. Moreover, the lower expressions of TGF-ß, IL-17a, IL-10, and IFN-γ in CTLs were associated with ESCC better prognosis. CONCLUSIONS: The association between the impaired function of CD3+ CD8+ T cell subsets and miR-21 expression could be introduced as novel therapeutic targets and powerful diagnostic and prognostic markers for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs/sangre , Linfocitos T Citotóxicos/metabolismo , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Citocinas/sangre , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Humanos , Pronóstico
11.
Vaccines (Basel) ; 9(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34451989

RESUMEN

While the protective efficacy of the infectious laryngotracheitis virus (ILTV) vaccines is well established, little is known about which components of the immune response are associated with effective resistance and vaccine protection. Early studies have pointed to the importance of the T cell-mediated immune responses. This study aimed to evaluate the activation of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and to quantify the presence of regulatory T cells (Tregs) in the larynx-trachea of chickens vaccinated with chicken embryo origin (CEO), tissue culture origin (TCO) and recombinant Herpesvirus of Turkey-laryngotracheitis (rHVT-LT) vaccines after challenge. Our results indicated that CEO vaccine protection was characterized by early CTLs and activated CTLs enhanced responses. TCO and rHVT-LT protection were associated with a moderate increase in resting and activated CTLs followed by an enhanced NK cell response. Tregs increase was only detected in the non-vaccinated challenged group, probably to support healing of the severe trachea epithelial damage. Taken together, our results revealed main differences in the cellular immune responses elicited by CEO, TCO, and rHVT-LT vaccination in the upper respiratory tract after challenge, and that activated CTLs rather than NK cells play a main role in vaccine protection.

12.
Methods Mol Biol ; 2325: 203-213, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34053060

RESUMEN

Involvement of T lymphocytes in kidney transplantation is a well-developed topic; however, most of the scientific interest focused on the different type of CD4+ lymphocyte subpopulations. Few authors, instead, investigated the role of CD8+ T cells in renal transplantation and how deleterious they can be to long-term allograft survival. Recently, there has been a renewed interest in the CD8+ T cells involvement in the transplantation field with the aim to investigate the immunological mechanisms underlying the infiltration of CD8+ T cells and their biological functions in human kidney allografts. The purpose of the present review is to highlight the role of allo-reactive cytotoxic T lymphocytes (CTLs) CD8+ subset in allograft kidney recipients and their related clinical complications.


Asunto(s)
Inmunidad Adaptativa , Citocinas/metabolismo , Rechazo de Injerto/inmunología , Terapia de Inmunosupresión/métodos , Trasplante de Riñón , Linfocitos T Citotóxicos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/metabolismo , Transcriptoma/genética
13.
Front Immunol ; 12: 773168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003090

RESUMEN

The fruitful results of tumor immunotherapy establish its indispensable status in the regulation of the tumorous immune context. It seems that the treatment of programmed cell death receptor 1 (PD-1) blockade is one of the most promising approaches for cancer control. The significant efficacy of PD-1 inhibitor therapy has been made in several cancer types, such as breast cancer, lung cancer, and multiple myeloma. Even so, the mechanisms of how anti-PD-1 therapy takes effect by impacting the immune microenvironment and how partial patients acquire the resistance to PD-1 blockade have yet to be studied. In this review, we discuss the cross talk between immune cells and how they promote PD-1 blockade efficacy. In addition, we also depict factors that may underlie tumor resistance to PD-1 blockade and feasible solutions in combination with it.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Animales , Resistencia a Antineoplásicos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos
14.
Oncoimmunology ; 9(1): 1851539, 2020 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33299663

RESUMEN

DPX is a unique T cell activating formulation that generates robust immune responses (both clinically and preclinically) which can be tailored to various cancers via the use of tumor-specific antigens and adjuvants. While DPX-based immunotherapies may act complementary with checkpoint inhibitors, combination therapy is not always easily predictable based on individual therapeutic responses. Optimizing these combinations can be improved by understanding the mechanism of action underlying the individual therapies. Magnetic Resonance Imaging (MRI) allows tracking of cells labeled with superparamagnetic iron oxide (SPIO), which can yield valuable information about the localization of crucial immune cell subsets. In this work, we evaluated the use of a multi-echo, single point MRI pulse sequence, TurboSPI, for tracking and quantifying cytotoxic T lymphocytes (CTLs) and myeloid lineage cells (MLCs). In a subcutaneous cervical cancer model (C3) we compared untreated mice to mice treated with either a single therapy (anti-PD-1 or DPX-R9F) or a combination of both therapies. We were able to detect, using TurboSPI, significant increases in CTL recruitment dynamics in response to combination therapy. We also observed differences in MLC recruitment to therapy-draining (DPX-R9F) lymph nodes in response to treatment with DPX-R9F (alone or in combination with anti-PD-1). We demonstrated that the therapies presented herein induced time-varying changes in cell recruitment. This work establishes that these quantitative molecular MRI techniques can be expanded to study a number of cancer and immunotherapy combinations to improve our understanding of longitudinal immunological changes and mechanisms of action.


Asunto(s)
Rastreo Celular , Neoplasias , Animales , Inmunoterapia , Ganglios Linfáticos/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones
15.
Front Immunol ; 11: 545414, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162974

RESUMEN

Neonatal hemophagocytic lymphohistiocytosis (HLH) is a medical emergency that can be associated with significant morbidity and mortality. Often these patients present with familial HLH (f-HLH), which is caused by gene mutations interfering with the cytolytic pathway of cytotoxic T-lymphocytes (CTLs) and natural killer cells. Here we describe a male newborn who met the HLH diagnostic criteria, presented with profound cholestasis, and carried a maternally inherited heterozygous mutation in syntaxin-binding protein-2 [STXBP2, c.568C>T (p.Arg190Cys)] in addition to a severe pathogenic variant in glucose 6-phosphate dehydrogenase [G6PD, hemizygous c.1153T>C (Cys385Arg)]. Although mutations in STXBP2 gene are associated with f-HLH type 5, the clinical and biological relevance of the p.Arg190Cys mutation identified in this patient was uncertain. To assess its role in disease pathogenesis, we performed functional assays and biochemical and microscopic studies. We found that p.Arg190Cys mutation did not alter the expression or subcellular localization of STXBP2 or STX11, neither impaired the STXBP2/STX11 interaction. In contrast, forced expression of the mutated protein into normal CTLs strongly inhibited degranulation and reduced the cytolytic activity outcompeting the effect of endogenous wild-type STXBP2. Interestingly, arginine 190 is located in a structurally conserved region of STXBP2 where other f-HLH-5 mutations have been identified. Collectively, data strongly suggest that STXBP2-R190C is a deleterious variant that may act in a dominant-negative manner by probably stabilizing non-productive interactions between STXBP2/STX11 complex and other still unknown factors such as the membrane surface or Munc13-4 protein and thus impairing the release of cytolytic granules. In addition to the contribution of STXBP2-R190C to f-HLH, the accompanied G6PD mutation may have compounded the clinical symptoms; however, the extent by which G6PD deficiency has contributed to HLH in our patient remains unclear.


Asunto(s)
Exocitosis/genética , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Proteínas Munc18/genética , Mutación , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Apoptosis/genética , Apoptosis/inmunología , Biomarcadores , Citotoxicidad Inmunológica , Susceptibilidad a Enfermedades , Expresión Génica , Estudios de Asociación Genética , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Humanos , Recién Nacido , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfohistiocitosis Hemofagocítica/complicaciones , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Conformación Proteica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Relación Estructura-Actividad , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
16.
Life Sci ; 258: 118110, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32698074

RESUMEN

Incapacitated immune system is a characteristic hallmark of solid tumors. Immune system within a tumor undergoes an imbalance in cellular dispersion and functionality. Effector cells are precluded from the invasive margin of tumor; instead, immune suppressor cells are present at high fractions. Conditions in the tumor microenvironment (TME) like altered metabolism, chronic hypoxia and chronic inflammation are the known predisposing factors, implicated in the immune malfunctioning. Deficiency of innate immune sensing mediated by checkpoint receptors including programmed death-1 receptor (PD-1), CTL-associated antigen-4 (CTLA-4) hijacked by tumor cells takes a major part of the blame, requiring a need for appropriate strategies in order to bring back the balance in the immune system. Immune checkpoint inhibitor (ICI) therapy has been in the eye of the current research rendering promising results. The story is not, however, that easy in which it is not so effective for Cold tumors, it may cause severe adverse effects, and that patients may acquire resistance to such therapy; this requires for updating the current knowledge about the immune ecosystem, using tumor type dependent dose calculation and exploiting proper adjuvants in order for evolving desired responses.


Asunto(s)
Evasión Inmune , Neoplasias/inmunología , Animales , Antígeno B7-H1/metabolismo , Carcinogénesis/patología , Humanos , Inmunoterapia , Neoplasias/terapia , Microambiente Tumoral/inmunología
17.
Adv Exp Med Biol ; 1223: 155-165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32030689

RESUMEN

Tumor-associated inflammation and immune responses are key components in the tumor microenvironment (TME) which regulate tumor growth, progression, and metastasis. Tumor-associated myeloid cells (TAMCs) are a group of cells that play multiple key roles including induction of tumor-associated inflammation/angiogenesis and regulation of tumor-specific T-cell responses. Thus, identification and characterization of key pathways that can regulate TAMCs are of critical importance for developing cancer immunotherapy. Recent studies suggest that CD200-CD200 receptor (CD200R) interaction may be important in regulating the TME via affecting TAMCs. In this chapter, we will give a brief overview of the CD200-CD200R axis, including the biology behind CD200-CD200R interaction and the role(s) it plays in tumor microenvironment and tumor growth, and activation/effector functions of T cells. We will also discuss CD200-CD200R's role as potential checkpoint molecules for cancer immunotherapy. Further investigation of the CD200-CD200R pathway will not only advance our understanding of tumor pathogenesis and immunity but also provide the rationale for CD200-CD200R-targeted immunotherapy of human cancer.


Asunto(s)
Antígenos CD/metabolismo , Inmunoterapia , Neoplasias/terapia , Receptores de Orexina/metabolismo , Microambiente Tumoral/inmunología , Antígenos CD/inmunología , Humanos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Receptores de Orexina/inmunología
18.
Fish Shellfish Immunol ; 95: 422-439, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31669897

RESUMEN

Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.


Asunto(s)
Citotoxicidad Inmunológica , Peces/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Citocinas/inmunología , Enfermedades de los Peces/inmunología , Células Asesinas Naturales/inmunología
19.
Life Sci ; 238: 116960, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629760

RESUMEN

Cancer is a disease of high complexity. Resistance to therapy is a major challenge in cancer targeted therapies. Overcoming this resistance requires a deep knowledge of the cellular interactions within tumor. Natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) are the main anti-cancer immune cells, while T regulatory cells (Tregs) and cancer associated fibroblasts (CAFs) facilitate immune escape of cancer cells. Melatonin is a natural agent with anti-cancer functions that has also been suggested as an adjuvant in combination with cancer therapy modalities such as chemotherapy, radiotherapy, immunotherapy and tumor vaccination. One of the main effects of melatonin is regulation of immune responses against cancer cells. Melatonin has been shown to potentiate the activities of anti-cancer immune cells, as well as attenuating the activities of Tregs and CAFs. It also has a potent effect on the mitochondria, which may change immune responses against cancer. In this review, we explain the mechanisms of immune regulation by melatonin involved in its anti-cancer effects.


Asunto(s)
Antioxidantes/uso terapéutico , Inmunoterapia , Melatonina/uso terapéutico , Neoplasias/tratamiento farmacológico , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos , Neoplasias/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
20.
Int Immunopharmacol ; 76: 105847, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31466051

RESUMEN

Radiotherapy is one of the most common treatment modalities for controlling a wide range of tumors. However, it has been shown that radiotherapy alone is unable to completely eradicate some tumors and could be associated with a high possibility of tumor recurrence. To date, various experimental and clinical studies have been conducted to explore some efficient targets within tumor microenvironment (TME) to enhance tumor response to radiotherapy; thus help eliminate or eradicate tumors. Although targeting DNA damage responses (DDRs) is associated with severe toxicities, studies in recent decade suggest that inhibition of some apoptosis/survival targets within TME is promising. This is also associated with changes in the numbers of T regulatory cells (Tregs) and cytotoxic T lymphocytes (CTLs). The inhibition of cyclooxygenase-2 (COX-2), phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) and vascular endothelial growth factor (VEGF) have also shown promising results. The combination of receptor tyrosine kinase (RTK) inhibitors with radiotherapy is interesting as well as the clinical use of some drugs and antibodies. Epidermal growth factor receptor (EGFR) inhibitors are the most common RTK inhibitors. Some clinical trials in recent years have shown very interesting results for immune checkpoint inhibitors (ICIs), especially programmed death-ligand 1 (PD-L1) and CTLs-associated antigen 4 (CTLA-4) inhibitors. It has been suggested that administration of ICIs during or after hypofractionated radiotherapy could lead to best results. In this review, we explain TME response to radiotherapy and potential targets for sensitization of cancer cells to radiotherapy.


Asunto(s)
Neoplasias/radioterapia , Tolerancia a Radiación , Animales , Humanos , Microambiente Tumoral/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA