Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.191
Filtrar
1.
Mutat Res Rev Mutat Res ; 794: 108511, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233049

RESUMEN

Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's. In the early 1980's two important methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish and collate databases of MN frequency in human populations world-wide which also captured demographic, lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly describe the achievements of the HUMN project during the period from the date of its foundation on 9th September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 workshops world-wide.

2.
J Biol Chem ; : 107774, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276932

RESUMEN

The relationship between O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and mitosis is intertwined. Besides the numerous mitotic OGT substrates that have been identified, OGT itself is also a target of the mitotic machinery. Previously, our investigations have shown that Checkpoint kinase 1 (Chk1) phosphorylates OGT at Ser-20 to increase OGT levels during cytokinesis, suggesting that OGT levels oscillate as mitosis progresses. Herein we studied its underlying mechanism. We set out from an R17C mutation of OGT, which is a uterine carcinoma mutation in The Cancer Genome Atlas. We found that R17C abolishes S20 phosphorylation of OGT, as it lies in the Chk1 phosphorylating consensus motif. Consistent with our previous report that pSer-20 is essential for OGT level increases during cytokinesis, we further demonstrate that the R17C mutation renders OGT less stable, decreases vimentin phosphorylation levels and results in cytokinesis defects. Based on bioinformatic predictions, pSer-20 renders OGT more likely to interact with 14-3-3 proteins, the phospho-binding signal adaptor/scaffold protein family. By screening the 7 isoforms of 14-3-3 family, we show that 14-3-3ε specifically associates with Ser-20-phosphorylated OGT. Moreover, we studied the R17C and S20A mutations in xenograft models and demonstrated that they both inhibit uterine carcinoma compared to wild-type OGT, probably due to less cellular reproduction. Our work is a sequel of our previous report on pS20 of OGT and is in line with the notion that OGT is intricately regulated by the mitotic network.

3.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253424

RESUMEN

The non-muscle actomyosin cytoskeleton generates contractile force through the dynamic rearrangement of its constituent parts. Actomyosin rings are a specialization of the non-muscle actomyosin cytoskeleton that drive cell shape changes during division, wound healing, and other events. Contractile rings throughout phylogeny and in a range of cellular contexts are built from conserved components including non-muscle myosin II (NMMII), actin filaments (F-actin), and crosslinking proteins. However, it is unknown whether diverse actomyosin rings close via a single unifying mechanism. To explore how contractile forces are generated by actomyosin rings, we studied three instances of ring closure within the common cytoplasm of the C. elegans oogenic germline: mitotic cytokinesis of germline stem cells (GSCs), apoptosis of meiotic compartments, and cellularization of oocytes. We found that each ring type closed with unique kinetics, protein density and abundance dynamics. These measurements suggested that the mechanism of contractile force generation varied across the subcellular contexts. Next, we formulated a physical model that related the forces generated by filament-filament interactions to the material properties of these rings that dictate the kinetics of their closure. Using this framework, we related the density of conserved cytoskeletal proteins anillin and NMMII to the kinematics of ring closure. We fitted model rings to in situ measurements to estimate parameters that are currently experimentally inaccessible, such as the asymmetric distribution of protein along the length of F-actin, which occurs naturally due to differences in the dimensions of the crosslinker and NMMII filaments. Our work predicted that the role of NMMII varies across these ring types, due in part to its distribution along F-actin and motoring. Our model also predicted that the degree of contractility and the impact of ring material properties on contractility differs among ring types.

4.
J Cell Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239853

RESUMEN

Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid, phosphatidylinositol-4,5- bisphosphate [PI(4,5)P2], is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain its medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the PI5-kinase Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels is not known in S. pombe. To identify Its3 regulators, we used proximity-based biotinylation and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the ER-PM contact site proteins, Scs2 and Scs22. Our evidence suggests Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39230425

RESUMEN

FtsZ forms a ring-like assembly at the site of division in bacteria. It is the first protein involved in the formation of the divisome complex to split the cell into two halves, indicating its importance in bacterial cell division. FtsZ is an attractive target for developing new anti-microbial drugs to overcome the challenges of antibiotic resistance. The most potent inhibitor against FtsZ is PC190723, which is effective against all strains and species of Staphylococcus, including the methicillin- and multi-drug-resistant Staphylococcus aureus and strains of Bacillus. However, FtsZs from bacteria such as E. coli, Streptococcus, and Enterococcus were shown to be resistant to this inhibitor. In this study, we provide further evidence that the three pairwise bridging interactions, between residues S227 and G191, R307 and E198 and D299 and R202, between S7, S9, S10 ß-strands and the H7 helix occlude the inhibitor from binding to E. coli FtsZ. We generated single, double and triple mutations to disrupt those bridges and tested the effectiveness of PC190723 directly on Z-ring assembly in vivo. Our results show that the disruption of S227-G191 and R307-E198 bridges render EcFtsZ highly sensitive to PC190723 for Z-ring assembly. Ectopic expression of the double mutants, FtsZ S227I R307V results in hypersensitivity of the susceptible E. coli imp4213 strain to PC190723. Our studies could further predict the effectiveness of PC190723 or its derivatives towards FtsZs of other bacterial genera.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39147444

RESUMEN

In the event of a large-scale incident involving radiological or nuclear exposures, there is a potential for large numbers of individuals to have received doses of radiation sufficient to cause adverse health effects. It is imperative to quickly identify these individuals in order to provide information to the medical community to assist in making decisions about their treatment. The cytokinesis-block micronucleus assay is a well-established method for performing biodosimetry. This assay has previously been adapted to imaging flow cytometry and has been validated as a high-throughput option for providing dose estimates in the range of 0-10 Gy. The goal of this study was to test the ability to further optimize the assay by reducing the time of culture to 48 h from 68 h as well as reducing the volume of blood required for the analysis to 200 µL from 2 mL. These modifications would provide efficiencies in time and ease of processing impacting the ability to manage large numbers of samples and provide dose estimates in a timely manner. Results demonstrated that either the blood volume or the culture time could be reduced while maintaining dose estimates with sufficient accuracy for triage analysis. Reducing both the blood volume and culture time, however, resulted in poor dose estimates. In conclusion, depending on the needs of the scenario, either culture time or the blood volume could be reduced to improve the efficiency of analysis for mass casualty scenarios.


Asunto(s)
Citocinesis , Citometría de Flujo , Pruebas de Micronúcleos , Pruebas de Micronúcleos/métodos , Humanos , Citometría de Flujo/métodos , Factores de Tiempo , Volumen Sanguíneo , Relación Dosis-Respuesta en la Radiación , Animales
7.
Proc Natl Acad Sci U S A ; 121(29): e2320769121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990949

RESUMEN

Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.


Asunto(s)
Actomiosina , Membrana Celular , Citocinesis , Citocinesis/fisiología , Membrana Celular/metabolismo , Humanos , Actomiosina/metabolismo
8.
Curr Biol ; 34(14): 3201-3214.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38991614

RESUMEN

The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.


Asunto(s)
Actomiosina , Caenorhabditis elegans , Citocinesis , Citocinesis/fisiología , Animales , Caenorhabditis elegans/fisiología , Actomiosina/metabolismo , Fenómenos Biomecánicos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Retroalimentación Fisiológica , Proteína de Unión al GTP rhoA/metabolismo , Embrión no Mamífero/fisiología
9.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39026698

RESUMEN

Septins can function as scaffolds for protein recruitment, membrane-bound diffusion barriers, or membrane curvature sensors. Septins are important for cytokinesis, but their exact roles are still obscure. In fission yeast, four septins (Spn1 to Spn4) accumulate at the rim of the division plane as rings. The octameric exocyst complex, which tethers exocytic vesicles to the plasma membrane, exhibits a similar localization and is essential for plasma membrane deposition during cytokinesis. Without septins, the exocyst spreads across the division plane but absent from the rim during septum formation. These results suggest that septins and the exocyst physically interact for proper localization. Indeed, we predicted six pairs of direct interactions between septin and exocyst subunits by AlphaFold2 ColabFold, most of them are confirmed by co-immunoprecipitation and yeast two-hybrid assays. Exocyst mislocalization results in mistargeting of secretory vesicles and their cargos, which leads to cell-separation delay in septin mutants. Our results indicate that septins guide the targeting of exocyst complex on the plasma membrane for vesicle tethering during cytokinesis through direct physical interactions.

10.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057340

RESUMEN

Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.

11.
EMBO J ; 43(17): 3752-3786, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009675

RESUMEN

Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.


Asunto(s)
Citocinesis , Proteína Fosfatasa 2 , Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Membrana Celular/metabolismo , Animales , División Celular , Humanos
12.
mBio ; 15(8): e0168724, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39041810

RESUMEN

The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.


Asunto(s)
División Celular , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Multimerización de Proteína , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química
13.
Dev Cell ; 59(17): 2333-2346.e6, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38848716

RESUMEN

In plant vegetative tissues, cell division employs a mitotic microtubule array called the preprophase band (PPB) that marks the cortical division site. This transient cytoskeletal array imprints the spatial information to be read by the cytokinetic phragmoplast at later stages of mitotic cell division. In Arabidopsis thaliana, we discovered that the PPB recruited the Myosin XI motor MYA1/Myo11F to the cortical division site, where it joined microtubule-associated proteins and motors to form a ring of prominent cytoskeletal assemblies that received the expanding phragmoplast. Such a myosin localization pattern at the cortical division site was dependent on the POK1/2 Kinesin-12 motors. This regulatory function of MYA1/Myo11F in phragmoplast guidance was dependent on intact actin filaments. The discovery of these cytoskeletal motor assemblies pinpoints a mechanism underlying how two dynamic cytoskeletal networks work in concert to govern PPB-dependent division plane orientation in flowering plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocinesis , Microtúbulos , Miosinas , Arabidopsis/metabolismo , Arabidopsis/citología , Citocinesis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Microtúbulos/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , División Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Cinesinas/metabolismo , Mitosis , Citoesqueleto/metabolismo
14.
Pak J Biol Sci ; 27(5): 276-282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38840468

RESUMEN

<b>Background and Objective:</b> Gamma irradiation induces genotoxicity, characterized by the formation of extra-nuclear bodies and left behind during the anaphase stage of cell division, often referred to as a micronucleus (MN). The present work aims to monitor exposure to ionizing radiation as a genotoxic agent in the lymphocytes of workers at radiation energy centers. <b>Materials and Methods:</b> The lymphocyte cytokinesis block micronucleus assay used and analyzed the correlation between the Nuclear Division Index (NDI), age, blood type and the number of micronuclei (MN). Blood samples were collected from 20 volunteers in heparin tubes, exposed to 2 Gy gamma rays and cultured <i>in vitro</i>. <b>Results:</b> A significant difference in the number of micronuclei between blood group A and blood groups A, B and AB. The Nuclear Division Index (NDI) value for lymphocytes of radiation energy center workers after gamma radiation was significant (1.74±0.1) but still within the normal range. Neither MN frequency nor NDI values correlated with age, but MN frequency showed a correlation with blood type. <b>Conclusion:</b> The gamma irradiation did not induce a cytostatic effect but proved genotoxic to the lymphocytes of radiation energy center workers. Notably, blood type A demonstrated higher sensitivity to gamma radiation.


Asunto(s)
Citocinesis , Rayos gamma , Linfocitos , Pruebas de Micronúcleos , Exposición Profesional , Humanos , Rayos gamma/efectos adversos , Linfocitos/efectos de la radiación , Linfocitos/metabolismo , Pruebas de Micronúcleos/métodos , Citocinesis/efectos de la radiación , Exposición Profesional/efectos adversos , Adulto , Masculino , Persona de Mediana Edad , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Femenino
15.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826455

RESUMEN

Axonal outgrowth, cell crawling, and cytokinesis utilize actomyosin, microtubule-based motors, cytoskeletal dynamics, and substrate adhesions to produce traction forces and bulk cellular motion. While it has long been appreciated that growth cones resemble crawling cells and that the mechanisms that drive cytokinesis help power cell crawling, they are typically viewed as unique processes. To better understand the relationship between these modes of motility, here, we developed a unified active fluid model of cytokinesis, amoeboid migration, mesenchymal migration, neuronal migration, and axonal outgrowth in terms of cytoskeletal flow, adhesions, viscosity, and force generation. Using numerical modeling, we fit subcellular velocity profiles of the motions of cytoskeletal structures and docked organelles from previously published studies to infer underlying patterns of force generation and adhesion. Our results indicate that, during cytokinesis, there is a primary converge zone at the cleavage furrow that drives flow towards it; adhesions are symmetric across the cell, and as a result, cells are stationary. In mesenchymal, amoeboid, and neuronal migration, the site of the converge zone shifts, and differences in adhesion between the front and back of the cell drive crawling. During neuronal migration and axonal outgrowth, the primary convergence zone lies within the growth cone, which drives actin retrograde flow in the P-domain and bulk anterograde flow of the axonal shaft. They differ in that during neuronal migration, the cell body is weakly attached to the substrate and thus moves forward at the same velocity as the axon. In contrast, during axonal outgrowth, the cell body strongly adheres to the substrate and remains stationary, resulting in a decrease in flow velocity away from the growth cone. The simplicity with which cytokinesis, cell crawling, and axonal outgrowth can be modeled by varying coefficients in a simple model suggests a deep connection between them.

16.
Membranes (Basel) ; 14(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38921504

RESUMEN

The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. However, it remains unclear whether and which cell shape descriptors can characterize different cellular physiological states. In this study, 12 geometric shape descriptors for a three-dimensional (3D) object were collected from the previous literature and tested with a public dataset of ~400,000 independent 3D cell regions segmented based on fluorescent labeling of the cell membranes in Caenorhabditis elegans embryos. It is revealed that those shape descriptors can faithfully characterize cellular physiological states, including (1) cell division (cytokinesis), along with an abrupt increase in the elongation ratio; (2) a negative correlation of cell migration speed with cell sphericity; (3) cell lineage specification with symmetrically patterned cell shape changes; and (4) cell fate specification with differential gene expression and differential cell shapes. The descriptors established may be used to identify and predict the diverse physiological states in numerous cells, which could be used for not only studying developmental morphogenesis but also diagnosing human disease (e.g., the rapid detection of abnormal cells).

17.
Eur J Nutr ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864865

RESUMEN

PURPOSE: Magnesium is one of the most common elements in the human body and plays an important role as a cofactor of enzymes required for DNA replication and repair and many other biochemical mechanisms including sensing and regulating one-carbon metabolism deficiencies. Low intake of magnesium can increase the risk of many diseases, in particular, chronic degenerative disorders. However, its role in prevention of DNA damage has not been studied fully in humans so far. Therefore, we tested the hypothesis that magnesium deficiency either on its own or in conjunction with high homocysteine (Hcy) induces DNA damage in vivo in humans. METHODS: The present study was carried out in 172 healthy middle aged subjects from South Australia. Blood levels of magnesium, Hcy, folate and vitamin B12 were measured. Cytokinesis-Block Micronucleus cytome assay was performed to measure three DNA damage biomarkers: micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) in peripheral blood lymphocytes. RESULTS: Data showed that magnesium and Hcy are significantly inversely correlated with each other (r = - 0.299, p < 0.0001). Furthermore, magnesium is positively correlated both with folate (p = 0.002) and vitamin B12 (p = 0.007). Magnesium is also significantly inversely correlated with MN (p < 0.0001) and NPB (p < 0.0001). Individuals with low magnesium and high Hcy exhibited significantly higher frequency of MN and NPBs compared to those with high magnesium and low Hcy (p < 0.0001). Furthermore, there was an interactive effect between these two factors as well in inducing MN (p = 0.01) and NPB (p = 0.048). CONCLUSIONS: The results obtained in the present study indicate for the first time that low in vivo levels of magnesium either on its own or in the presence of high Hcy increases DNA damage as evident by higher frequencies of MN and NPBs.

18.
Proc Natl Acad Sci U S A ; 121(25): e2318838121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870057

RESUMEN

Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.


Asunto(s)
Caenorhabditis elegans , Huso Acromático , Animales , Caenorhabditis elegans/embriología , Ratones , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Citocinesis/fisiología , Rotación , Cigoto/metabolismo , Cigoto/citología , Cigoto/crecimiento & desarrollo , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Modelos Biológicos
19.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832826

RESUMEN

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Asunto(s)
Citocinesis , Drosophila melanogaster , Ecdisona , Células Germinativas , Testículo , Animales , Masculino , Ecdisona/metabolismo , Testículo/metabolismo , Femenino , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citología , Nicho de Células Madre , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular , Transducción de Señal , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
20.
Microb Cell Fact ; 23(1): 179, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890717

RESUMEN

BACKGROUND: Human lysozyme (hLYZ) is a natural antibacterial protein with broad applications in food and pharmaceutical industries. Recombinant production of hLYZ in Komagataella phaffii (K. phaffii) has attracted considerable attention, but there are very limited strategies for its hyper-production in yeast. RESULTS: Here through Atmospheric and Room Temperature Plasma (ARTP)-based mutagenesis and transcriptomic analysis, the expression of two genes MYO1 and IQG1 encoding the cytokinesis core proteins was identified downregulated along with higher hLYZ production. Deletion of either gene caused severe cytokinesis defects, but significantly enhanced hLYZ production. The highest hLYZ yield of 1,052,444 ± 23,667 U/mL bioactivity and 4.12 ± 0.11 g/L total protein concentration were obtained after high-density fed-batch fermentation in the Δmyo1 mutant, representing the best production of hLYZ in yeast. Furthermore, O-linked mannose glycans were characterized on this recombinant hLYZ. CONCLUSIONS: Our work suggests that cytokinesis-based morphology engineering is an effective way to enhance the production of hLYZ in K. phaffii.


Asunto(s)
Muramidasa , Proteínas Recombinantes , Saccharomycetales , Muramidasa/metabolismo , Muramidasa/genética , Muramidasa/biosíntesis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/genética , Humanos , Fermentación , Citocinesis , Ingeniería Metabólica/métodos , Técnicas de Cultivo Celular por Lotes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA