Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(39): e2304152120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722047

RESUMEN

Millennial-scale ice sheet variability (1-15 kyr periods) is well documented in the Quaternary, providing insight into critical atmosphere-ocean-cryosphere interactions that can inform the mechanism and pace of future climate change. Ice sheet variability at similar frequencies is comparatively less known and understood prior to the Quaternary during times, where higher atmospheric pCO2 and warmer climates prevailed, and continental-scale ice sheets were largely restricted to Antarctica. In this study, we evaluate a high-resolution clast abundance dataset (ice-rafted debris) that captures East Antarctic ice sheet variability in the western Ross Sea during the early Miocene. This dataset is derived from a 100 m-thick mudstone interval in the ANtarctic DRILLing (ANDRILL or AND) core 2A, which preserves a record of precession and eccentricity variability. The sedimentation rates are of appropriate resolution to also characterize the signature of robust, subprecession cyclicity. Strong sub-precession (~10 kyr) cyclicity is observed, with an amplitude modulation in lockstep with eccentricity, indicating a relationship between high-frequency Antarctic ice sheet dynamics and astronomical forcing. Bicoherence analysis indicates that many of the observed millennial-scale cycles (as short as 1.2 kyr) are associated with nonlinear interactions (combination or difference tones) between each other and the Milankovitch cycles. The presence of these cycles during the Miocene reveals the ubiquity of millennial-scale ice sheet variability and sheds light on the interactions between Earth's atmosphere, ocean, and ice in climates warmer than the Quaternary.

2.
Proc Natl Acad Sci U S A ; 120(15): e2214558120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011203

RESUMEN

The modern pattern of the Asian monsoon is thought to have formed around the Oligocene/Miocene transition and is generally attributed to Himalaya-Tibetan Plateau (H-TP) uplift. However, the timing of the ancient Asian monsoon over the TP and its response to astronomical forcing and TP uplift remains poorly known because of the paucity of well-dated high-resolution geological records from the TP interior. Here, we present a precession-scale cyclostratigraphic sedimentary section of 27.32 to 23.24 million years ago (Ma) during the late Oligocene epoch from the Nima Basin to show that the South Asian monsoon (SAM) had already advanced to the central TP (32°N) at least by 27.3 Ma, which is indicated by cyclic arid-humid fluctuations based on environmental magnetism proxies. A shift of lithology and astronomically orbital periods and amplified amplitude of proxy measurements as well as a hydroclimate transition around 25.8 Ma suggest that the SAM intensified at ~25.8 Ma and that the TP reached a paleoelevation threshold for enhancing the coupling between the uplifted plateau and the SAM. Orbital short eccentricity-paced precipitation variability is argued to be mainly driven by orbital eccentricity-modulated low-latitude summer insolation rather than glacial-interglacial Antarctic ice sheet fluctuations. The monsoon data from the TP interior provide key evidence to link the greatly enhanced tropical SAM at 25.8 Ma with TP uplift rather than global climate change and suggest that SAM's northward expansion to the boreal subtropics was dominated by a combination of tectonic and astronomical forcing at multiple timescales in the late Oligocene epoch.

3.
Proc Natl Acad Sci U S A ; 119(40): e2117146119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161904

RESUMEN

The long-term history of the Earth-Moon system as reconstructed from the geological record remains unclear when based on fossil growth bands and tidal laminations. A possibly more robust method is provided by the sedimentary record of Milankovitch cycles (climatic precession, obliquity, and orbital eccentricity), whose relative ratios in periodicity change over time as a function of a decreasing Earth spin rate and increasing lunar distance. However, for the critical older portion of Earth's history where information on Earth-Moon dynamics is sparse, suitable sedimentary successions in which these cycles are recorded remain largely unknown, leaving this method unexplored. Here we present results of cyclostratigraphic analysis and high-precision U-Pb zircon dating of the lower Paleoproterozoic Joffre Member of the Brockman Iron Formation, NW Australia, providing evidence for Milankovitch forcing of regular lithological alternations related to Earth's climatic precession and orbital eccentricity cycles. Combining visual and statistical tools to determine their hierarchical relation, we estimate an astronomical precession frequency of 108.6 ± 8.5 arcsec/y, corresponding to an Earth-Moon distance of 321,800 ± 6,500 km and a daylength of 16.9 ± 0.2 h at 2.46 Ga. With this robust cyclostratigraphic approach, we extend the oldest reliable datum for the lunar recession history by more than 1 billion years and provide a critical reference point for future modeling and geological investigation of Precambrian Earth-Moon system evolution.

4.
Proc Natl Acad Sci U S A ; 119(17): e2118696119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452307

RESUMEN

Sedimentological records provide the only accessible archive for unraveling Earth's orbital variations in the remote geological past. These variations modulate Earth's climate system and provide essential constraints on gravitational parameters used in solar system modeling. However, geologic documentation of midlatitude response to orbital climate forcing remains poorly resolved compared to that of the low-latitude tropics, especially before 50 Mya, the limit of reliable extrapolation from the present. Here, we compare the climate response to orbital variations in a Late Triassic midlatitude temperate setting in Jameson Land, East Greenland (∼43°N paleolatitude) and the tropical low paleolatitude setting of the Newark Basin, with independent time horizons provided by common magnetostratigraphic boundaries whose timing has been corroborated by uranium-lead (U-Pb) zircon dating in correlative strata on the Colorado Plateau. An integrated cyclostratigraphic and magnetostratigraphic age model revealed long-term climate cycles with periods of 850,000 and 1,700,000 y ascribed to the Mars­Earth grand orbital cycles. This indicates a 2:1 resonance between modulation of orbital obliquity and eccentricity variations more than 200 Mya and whose periodicities are inconsistent with astronomical solutions and indicate chaotic diffusion of the solar system. Our findings also demonstrate antiphasing in climate response between low and midlatitudes that has implications for precise global correlation of geological records.


Asunto(s)
Clima , Planetas , Planeta Tierra , Evolución Planetaria , Geología , Groenlandia
5.
Cretac Res ; 38: 80-96, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27087718

RESUMEN

A section from the southern (Austro-Alpine Northern Calcareous Alps) margin of the Penninic Ocean in the NW Tethys realm of Late Campanian age is investigated stratigraphically. Plankton foraminifer and nannofossil biostratigraphy designate the presence of the Globotruncana ventricosa Zone and the Radotruncana (Globotruncanita) calcarata Zone, and standard nannofossil zones CC21-UC15cTP and CC22ab-UC15deTP. The combination of carbon isotope stratigraphy, strontium isotopes, and cyclostratigraphy allows a detailed chronostratigraphic correlation. Periodicity was obtained by power spectral analysis, sinusoidal regression, and Morlet wavelets. The duration of the calcarata Total Range Zone is calculated by orbital cyclicity expressed in thickness data of limestone-marl rhythmites and stable carbon isotope data. Precessional, obliquity, and short and long eccentricity cycles are identified and give an extent of c. 806 kyr for the zone. Mean sediment accumulation rates are as low as 1.99 cm/kyr and correspond well to sediment accumulation rates in similar settings. We further discuss chronostratigraphic implications of our data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA