Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Rec ; 24(6): e202300335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847061

RESUMEN

In the last past twenty years, research on luminescent platinum (II) complexes has been intensively developed for useful application such as organic light emitting diodes (OLEDs). More recently, new photoluminescent complexes based on diazine ligands (pyrimidine, pyrazine, pyridazine, quinazoline and quinoxaline) have been developed in this context. This review will summarize the photophysical properties of most of the phosphorescent diazine Pt(II) complexes described in the literature and compare the results to pyridine analogues whenever possible. Based on the emission color, and the photoluminescence quantum yield (PLQY) values, the relationship between structure modification, and photophysical properties are highlighted. Tuning of emission color, quantum yields in solution and solid state and, for some complexes, aggregation induced emission (AIE) or thermally activated delayed fluorescence (TADF) properties are described. When emitting OLEDs have been built from diazine Pt(II) complexes, the external quantum efficiency (EQE) values and luminance for different emission wavelengths and in some cases, chromaticity coordinates obtained from devices, are given. Finally, this review highlights the growing interest in studies of new luminescent diazine Pt(II) complexes for OLED applications.

2.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731408

RESUMEN

Functionalization of C-H bonds has emerged as a powerful strategy for converting inert, nonfunctional C-H bonds into their reactive counterparts. A wide range of C-H bond functionalization reactions has become possible by the catalysis of metals, typically from the second row of transition metals. First-row transition metals can also catalyze C-H functionalization, and they have the merits of greater earth-abundance, lower cost and better environmental friendliness in comparison to their second-row counterparts. C-H bond alkylation is a particularly important C-H functionalization reaction due to its chemical significance and its applications in natural product synthesis. This review covers Ni-catalyzed C-H bond alkylation reactions using alkyl halides and olefins as alkyl sources.

3.
Molecules ; 29(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38731639

RESUMEN

The cyclometalated terpyridine complexes [Ru(η2-OAc)(NC-tpy)(PP)] (PP = dppb 1, (R,R)-Skewphos 4, (S,S)-Skewphos 5) are easily obtained from the acetate derivatives [Ru(η2-OAc)2(PP)] (PP = dppb, (R,R)-Skewphos 2, (S,S)-Skewphos 3) and tpy in methanol by elimination of AcOH. The precursors 2, 3 are prepared from [Ru(η2-OAc)2(PPh3)2] and Skewphos in cyclohexane. Conversely, the NNN complexes [Ru(η1-OAc)(NNN-tpy)(PP)]OAc (PP = (R,R)-Skewphos 6, (S,S)-Skewphos 7) are synthesized in a one pot reaction from [Ru(η2-OAc)2(PPh3)2], PP and tpy in methanol. The neutral NC-tpy 1, 4, 5 and cationic NNN-tpy 6, 7 complexes catalyze the transfer hydrogenation of acetophenone (S/C = 1000) in 2-propanol with NaOiPr under light irradiation at 30 °C. Formation of (S)-1-phenylethanol has been observed with 4, 6 in a MeOH/iPrOH mixture, whereas the R-enantiomer is obtained with 5, 7 (50-52% ee). The tpy complexes show cytotoxic activity against the anaplastic thyroid cancer 8505C and SW1736 cell lines (ED50 = 0.31-8.53 µM), with the cationic 7 displaying an ED50 of 0.31 µM, four times lower compared to the enantiomer 6.


Asunto(s)
Antineoplásicos , Piridinas , Rutenio , Humanos , Catálisis , Rutenio/química , Línea Celular Tumoral , Piridinas/química , Piridinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Estructura Molecular , Procesos Fotoquímicos
4.
ACS Appl Mater Interfaces ; 15(37): 43607-43620, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37698293

RESUMEN

Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.


Asunto(s)
Oro , Nanopartículas , Albúmina Sérica Bovina , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos
5.
Chem Asian J ; 18(19): e202300640, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37610036

RESUMEN

One-pot syntheses of new π-extended metallaaromatic compounds have been developed by utilizing Ir-mediated CH bond activation of ethylene- or ethylidene-bridged diphenol derivatives. Depending on the bridging alkyl groups, two types of iridaoxabenzenes, both of which are doubly fused with benzo and benzofuran units, have been obtained. Studies on their structures and electronic characters indicate that both complexes have an aromatic character on the iridaoxacycles, and their π-conjugated systems are fully delocalized over the whole molecular skeletons. These novel metallaaromatic complexes exhibited some reactivities which are distinct from those reported for the non-fused metallaaromatic compounds.

6.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364075

RESUMEN

Rollover cyclometalated complexes constitute a family of derivatives which differ from classical cyclometalated species in certain aspects. Various potential application fields have been developed for both classes of compounds, which have both similarities and differences. In order to uncover the relationships and distinctions between these two families of compounds, four Pt(II) cyclometalated complexes derived from 2-phenylpyridine (ppy) and 2,2'-bipyridine (bpy), assumed as prototypical ligands, were compared. For this study, an electron rich isostructural and isoelectronic pair of compounds, [Pt(N^C)Me(PPh3)], and an electron-poorer compound, [Pt(N^C)Cl(PPh3)] were chosen (N^C = ppy or bpy). DFT calculations, cyclic voltammetry, and UV-Vis spectra also helped to shed light into these species. Due to the presence of the more electronegative nitrogen in place of a C-H group, the rollover bpy-H ligand becomes a slightly weaker donor than the classical ppy-H ligand, and hence, generates (slightly) more stable cyclometalated complexes, lower energy frontier molecular orbitals, and electron-poorer platinum centers. On the whole, it was revealed that classical and rollover complexes have overall structural similarity, which contrasts to their somewhat different chemical behavior.


Asunto(s)
Electrones , Platino (Metal) , Ligandos , Cristalografía por Rayos X , Platino (Metal)/química , Nitrógeno
7.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296617

RESUMEN

The electrochemistry and photophysics of the Pt(II) complexes [Pt(naphen)(X)] (Hnaphen = naphtho[1,2-b][1,10]phenanthroline, X = Cl or C≡CPh) containing the rigid tridentate C^N^N-coordinating pericyclic naphen ligand was studied alongside the complexes of the tetrahydro-derivative [Pt(thnaphen)(X)] (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline) and the N^C^N-coordinated complex [Pt(bdq)(Cl)] (Hbdq = benzo[1,2-h:5,4-h']diquinoline. The cyclic voltammetry showed reversible reductions for the C^N^N complexes, with markedly fewer negative potentials (around -1.6 V vs. ferrocene) for the complexes containing the naphen ligand compared with the thnaphen derivatives (around -1.9 V). With irreversible oxidations at around +0.3 V for all of the complexes, the naphen made a difference in the electrochemical gap of about 0.3 eV (1.9 vs. 2.2 eV) compared with thnaphen. The bdq complex was completely different, with an irreversible reduction at around -2 V caused by the N^C^N coordination pattern, which lacked a good electron acceptor such as the phenanthroline unit in the C^N^N ligand naphen. Long-wavelength UV-Vis absorption bands were found around 520 to 530 nm for the C^N^N complexes with the C≡CPh coligand and were red-shifted when compared with the Cl derivatives. The N^C^N-coordinated bdq complex was markedly blue-shifted (493 nm). The steady-state photoluminescence spectra showed poorly structured emission bands peaking at around 630 nm for the two naphen complexes and 570 nm for the thnaphen derivatives. The bdq complex showed a pronounced vibrational structure and an emission maximum at 586 nm. Assuming mixed 3LC/3MLCT excited states, the vibronic progression for the N^C^N bdq complex indicated a higher LC character than assumed for the C^N^N-coordinated naphen and thnaphen complexes. The blue-shift was a result of the different N^C^N vs. C^N^N coordination. The photoluminescence lifetimes and quantum yields ΦL massively increased from solutions at 298 K (0.06 to 0.24) to glassy frozen matrices at 77 K (0.80 to 0.95). The nanosecond time-resolved study on [Pt(naphen)(Cl)] showed a phosphorescence emission signal originating from the mixed 3LC/3MLCT with an emission lifetime of around 3 µs.

8.
Chemistry ; 27(67): 16581-16600, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469015

RESUMEN

In the past few decades, chemistry of cyclometalated species has gained momentum with increased applications in several areas of scientific developments. Cyclometalation reactions result in the formation of stable metallacycles through the generation of metal-carbon covalent bonds by activating the unreactive Csp2 -H or Csp3 -H bonds. The extra stability gained by the formation of metallacycles enhances their applicability scopes especially in the area of homogeneous catalysis. In the recent research development in this area, NHC ligands (strong σ-donor and generally, weak π-acceptor) have been found to be one of the most suitable candidates for the intramolecular C-H activation process which leads to the cyclometalated species. The growth in the area of cyclometalation chemistry that started in the late 20th century is still continuing and in the past few decades, various examples of NHC derived transition metal-based cyclometalated complexes came into the picture. As covering all the reported literatures in this area (includes mainly late transition metals) will exceed the limits of minireview, we restricted ourselves to the recent (2015 - May 2021) examples of the most common Ru-, Rh-, and Ir-based CNHC ^C cyclometalated complexes and their applications in various homogeneous catalytic conversions such as transfer hydrogenation, amidation, oxidation of alcohols, annulations, and so forth.

9.
Molecules ; 26(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443649

RESUMEN

The three complexes [M(Me2dpb)Cl] (M = Ni, Pd, Pt) containing the tridentate N,C,N-cyclometalating 3,5-dimethyl-1,5-dipyridyl-phenide ligand (Me2dpb-) were synthesised using a base-assisted C‒H activation method. Oxidation potentials from cyclic voltammetry increased along the series Pt < Ni < Pd from 0.15 to 0.74 V. DFT calculations confirmed the essentially ligand-centred π*-type character of the lowest unoccupied molecular orbital (LUMO) for all three complexes in agreement with the invariant reduction processes. For the highest occupied molecular orbitals (HOMO), contributions from metal dyz, phenyl C4, C2, C1, and C6, and Cl pz orbitals were found. As expected, the dz2 (HOMO-1 for Ni) is stabilised for the Pd and Pt derivatives, while the antibonding dx2-y2 orbital is de-stabilised for Pt and Pd compared with Ni. The long-wavelength UV-vis absorption band energies increase along the series Ni < Pt < Pd. The lowest-energy TD-DFT-calculated state for the Ni complex has a pronounced dz2-type contribution to the overall metal-to-ligand charge transfer (MLCT) character. For Pt and Pd, the dz2 orbital is energetically not available and a strongly mixed Cl-to-π*/phenyl-to-π*/M(dyz)-to-π* (XLCT/ILCT/MLCT) character is found. The complex [Pd(Me2dpb)Cl] showed a structured emission band in a frozen glassy matrix at 77 K, peaking at 468 nm with a quantum yield of almost unity as observed for the previously reported Pt derivative. No emission was observed from the Ni complex at 77 or 298 K. The TD-DFT-calculated states using the TPSSh functional were in excellent agreement with the observed absorption energies and also clearly assessed the nature of the so-called "dark", i.e., d‒d*, excited configurations to lie low for the Ni complex (≥3.18 eV), promoting rapid radiationless relaxation. For the Pd(II) and Pt(II) derivatives, the "dark" states are markedly higher in energy with ≥4.41 eV (Pd) and ≥4.86 eV (Pt), which is in perfect agreement with the similar photophysical behaviour of the two complexes at low temperatures.

10.
Adv Mater ; 33(37): e2008613, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34338371

RESUMEN

Many drug delivery systems end up in the lysosome because they are built from covalent or kinetically inert supramolecular bonds. To reach other organelles, nanoparticles hence need to either be made from a kinetically labile interaction that allows re-assembly of the nanoparticles inside the cell following endocytic uptake, or, be taken up by a mechanism that short-circuits the classical endocytosis pathway. In this work, the intracellular fate of nanorods that self-assemble via the Pt…Pt interaction of cyclometalated platinum(II) compounds, is studied. These deep-red emissive nanostructures (638 nm excitation, ≈700 nm emission) are stabilized by proteins in cell medium. Once in contact with cancer cells, they cross the cell membrane via dynamin- and clathrin-dependent endocytosis. However, time-dependent confocal colocalization and cellular electron microscopy demonstrate that they directly move to mitochondria without passing by the lysosomes. Altogether, this study suggests that Pt…Pt interaction is strong enough to generate emissive, aggregated nanoparticles inside cells, but labile enough to allow these nanostructures to reach the mitochondria without being trapped in the lysosomes. These findings open new venues to the development of bioimaging nanoplatforms based on the Pt…Pt interaction.


Asunto(s)
Complejos de Coordinación/química , Nanoestructuras/química , Platino (Metal)/química , Línea Celular Tumoral , Complejos de Coordinación/metabolismo , Endocitosis , Humanos , Microscopía Confocal , Microscopía Electrónica de Rastreo , Mitocondrias/química , Mitocondrias/metabolismo , Teoría Cuántica
11.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809231

RESUMEN

The synthesis of cyclometalated osmium complexes is usually more complicated than of other transition metals such as Ni, Pd, Pt, Rh, where cyclometalation reactions readily occur via direct activation of C-H bonds. It differs also from their ruthenium analogs. Cyclometalation for osmium usually occurs under more severe conditions, in polar solvents, using specific precursors, stronger acids, or bases. Such requirements expand reaction mechanisms to electrophilic activation, transmetalation, and oxidative addition, often involving C-H bond activations. Osmacycles exhibit specific applications in homogeneous catalysis, photophysics, bioelectrocatalysis and are studied as anticancer agents. This review describes major synthetic pathways to osmacycles and related compounds and discusses their practical applications.

12.
Molecules ; 26(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804954

RESUMEN

A new class of bis-cyclometalated iridium(III) catalysts containing two inert cyclometalated 6-tert-butyl-2-phenyl-2H-indazole bidentate ligands or two inert cyclometalated 5-tert-butyl-1-methyl-2-phenylbenzimidazoles is introduced. The coordination sphere is complemented by two labile acetonitriles, and a hexafluorophosphate ion serves as a counterion for the monocationic complexes. Single enantiomers of the chiral-at-iridium complexes (>99% er) are obtained through a chiral-auxiliary-mediated approach using a monofluorinated salicyloxazoline and are investigated as catalysts in the enantioselective conjugate addition of indole to an α,ß-unsaturated 2-acyl imidazole and an asymmetric Nazarov cyclization.

13.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671758

RESUMEN

As a candidate for bifunctional asymmetric catalysts containing a half-sandwich C-N chelating Ir(III) framework (azairidacycle), a dinuclear Ir complex with an axially chiral linkage is newly designed. An expedient synthesis of chiral 2,2'-bis(aminomethyl)-1,1'-binaphthyl (1) from 1,1-bi-2-naphthol (BINOL) was accomplished by a three-step process involving nickel-catalyzed cyanation and subsequent reduction with Raney-Ni and KBH4. The reaction of (S)-1 with an equimolar amount of [IrCl2Cp*]2 (Cp* = η5-C5(CH3)5) in the presence of sodium acetate in acetonitrile at 80 °C gave a diastereomeric mixture of new dinuclear dichloridodiiridium complexes (5) through the double C-H bond cleavage, as confirmed by 1H NMR spectroscopy. A loss of the central chirality on the Ir centers of 5 was demonstrated by treatment with KOC(CH3)3 to generate the corresponding 16e amidoiridium complex 6. The following hydrogen transfer from 2-propanol to 6 provided diastereomers of hydrido(amine)iridium retaining the bis(azairidacycle) architecture. The dinuclear chlorido(amine)iridium 5 can serve as a catalyst precursor for the asymmetric transfer hydrogenation of acetophenone with a substrate to a catalyst ratio of 200 in the presence of KOC(CH3)3 in 2-propanol, leading to (S)-1-phenylethanol with up to an enantiomeric excess (ee) of 67%.


Asunto(s)
Compuestos Aza/química , Complejos de Coordinación/química , Iridio/química , Naftalenos/química , Complejos de Coordinación/síntesis química , Conformación Molecular
14.
Molecules ; 26(1)2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401624

RESUMEN

Reactions of cyclometalated compounds are numerous. This account is focused on one of such reactions, the exchange of cyclometalated ligands, a reaction between a cyclometalated compound and an incoming ligand that replaces a previously cyclometalated ligand to form a new metalacycle: + H-C*~Z ⇄ + H-C~Y. Originally discovered for PdII complexes with Y/Z = N, P, S, the exchange appeared to be a mechanistically challenging, simple, and convenient routine for the synthesis of cyclopalladated complexes. Over four decades it was expanded to cyclometalated derivatives of platinum, ruthenium, manganese, rhodium, and iridium. The exchange, which is also questionably referred to as transcyclometalation, offers attractive synthetic possibilities and assists in disclosing key mechanistic pathways associated with the C-H bond activation by transition metal complexes and C-M bond cleavage. Both synthetic and mechanistic aspects of the exchange are reviewed and discussed.


Asunto(s)
Metales/química , Compuestos Organometálicos , Ligandos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química
15.
Molecules ; 26(2)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435257

RESUMEN

Rollover cyclometalation constitutes a particular case of cyclometallation reaction. This reaction occurs when a chelated heterocyclic ligand loses its bidentate coordination mode and undergoes an internal rotation, after which a remote C-H bond is regioselectively activated, affording an uncommon cyclometalated complex, called "rollover cyclometalated complex". The key of the process is the internal rotation of the ligand, which occurs before the C-H bond activation and releases from coordination a donor atom. The new "rollover" ligand has peculiar properties, being a ligand with multiple personalities, no more a spectator in the reactivity of the complex. The main reason of this peculiarity is the presence of an uncoordinated donor atom (the one initially involved in the chelation), able to promote a series of reactions not available for classic cyclometalated complexes. The rollover reaction is highly regioselective, because the activated C-H bond is usually in a symmetric position with respect to the donor atom which detaches from the metal stating the rollover process. Due to this novel behavior, a series of potential applications have appeared in the literature, in fields such as catalysis, organic synthesis, and advanced materials.


Asunto(s)
Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Estructura Molecular
16.
J Inorg Biochem ; 208: 111080, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32330762

RESUMEN

Polypyridyl ruthenium complexes have been intensively investigated for their remarkable antiproliferative properties and some are currently being tested in clinical trials. Here, we investigated the impact of illumination on the biological properties of a series of new cyclometalated ruthenium compounds with increased π-conjugation. We determined that various of these complexes display a bivalent biological activity as they are highly cytotoxic by themselves in absence of light while their cytotoxicity can significantly be elevated towards an IC50 in the nanomolar range upon illumination. In particular, we showed that these complexes are particularly active (IC50 < 1 µM) on two gastric cancer cell lines (AGS, KATO III) that are resistant towards cisplatin (IC50 > 25 µM). As expected, light activation leads to increased production of singlet oxygen species in vitro and accumulation of reactive oxygen species in vivo. Importantly, we established that light exposure shifts the mode of action of the complexes towards activation of a caspase 3-dependent apoptosis that correlates with increased DNA damage. Altogether, this study characterizes novel ruthenium complexes with dual activity that can be tuned towards different mode of action in order to bypass cancer cell resistance mechanisms.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Inhibidores de Caspasas , Luz , Proteínas de Neoplasias , Rutenio , Neoplasias Gástricas , Inhibidores de Caspasas/síntesis química , Inhibidores de Caspasas/química , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Rutenio/química , Rutenio/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/patología
17.
Molecules ; 25(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102281

RESUMEN

The organonickel complexes [Ni(Phbpy)X] (X = Br, OAc, CN) were obtained for the first time in a direct base-assisted arene C(sp2)-H cyclometalation reaction from the rather unreactive precursor materials NiX2 and HPhbpy (6-phenyl-2,2'-bipyridine) or from the versatile precursor [Ni(HPhbpy)Br2]2. Different from previously necessary C‒Br oxidative addition at Ni(0), an extended scan of reaction conditions allowed quantitative access to the title compound from Ni(II) on synthetically useful timescales through base-assisted C‒H activation in nonpolar media at elevated temperature. Optimisation of the reaction conditions (various bases, solvents, methods) identified 1:2 mixtures of acetate and carbonate as unrivalled synergetic base pairs in the optimum protocol that holds promise as a readily usable and easily tuneable access to a wide range of direct nickelation products. While for the base-assisted C‒H metalation of the noble metals Ru, Ir, Rh, or Pd, this acetate/carbonate method has been established for a few years, our study represents the leap into the world of the base metals of the 3d series.


Asunto(s)
Técnicas de Química Sintética , Complejos de Coordinación/síntesis química , Níquel/química , Piridinas/química , Catálisis , Cationes Bivalentes , Reacción de Cicloadición , Humanos , Modelos Químicos , Oxidación-Reducción , Estereoisomerismo
18.
J Biol Chem ; 293(32): 12303-12317, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29887527

RESUMEN

Bacterial lactate racemase is a nickel-dependent enzyme that contains a cofactor, nickel pyridinium-3,5-bisthiocarboxylic acid mononucleotide, hereafter named nickel-pincer nucleotide (NPN). The LarC enzyme from the bacterium Lactobacillus plantarum participates in NPN biosynthesis by inserting nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide. This reaction, known in organometallic chemistry as a cyclometalation, is characterized by the formation of new metal-carbon and metal-sulfur σ bonds. LarC is therefore the first cyclometallase identified in nature, but the molecular mechanism of LarC-catalyzed cyclometalation is unknown. Here, we show that LarC activity requires Mn2+-dependent CTP hydrolysis. The crystal structure of the C-terminal domain of LarC at 1.85 Å resolution revealed a hexameric ferredoxin-like fold and an unprecedented CTP-binding pocket. The loss-of-function of LarC variants with alanine variants of acidic residues leads us to propose a carboxylate-assisted mechanism for nickel insertion. This work also demonstrates the in vitro synthesis and purification of the NPN cofactor, opening new opportunities for the study of this intriguing cofactor and of NPN-utilizing enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citidina Trifosfato/metabolismo , Lactobacillus plantarum/enzimología , Níquel/metabolismo , Nucleótidos/metabolismo , Compuestos Organometálicos/metabolismo , Racemasas y Epimerasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Níquel/química , Nucleótidos/química , Compuestos Organometálicos/química , Conformación Proteica , Racemasas y Epimerasas/química , Racemasas y Epimerasas/genética , Homología de Secuencia
19.
Curr Med Chem ; 25(4): 437-461, 2018 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-28554319

RESUMEN

BACKGROUND: The inherent problems accompanying chemotherapy necessitate the development of new anticancer approaches. The development of compounds that can disrupt cancerous cellular machinery by novel mechanisms, via interactions with proteins and non-canonical DNA structures (e.g. G-quadruplexes), as well as by alteration of the intracellular redox balance, is nowadays focus of intense research. In this context, organometallic compounds of the noble metals Pt and Au have become prominent experimental therapeutic agents. This review provides an overview of the Pt(II) and Au(III) cyclometalated compounds with a chelating ring containing a strong C-M σ -bond to improve the stability of the compounds with respect to ligand exchange reactions and biological reduction. Furthermore, these properties can be easily tuned by modification of either the anionic cyclometalated or the ancillary ligands. Special focus has been set to C^N, C^N^C, C^N^N and C^N^S platinum(II) and gold(III) pincer complexes regarding their synthesis and biological mechanisms of action as anticancer agents. METHODS: A structured search of both chemical and medicinal databases for peerreviewed research literature has been conducted. The quality of retrieved papers was appraised using standard tools. The synthesis as well as the chemical and biological properties of the described compounds were carefully reviewed and described. The findings were outlined using a conceptual framework. RESULTS: In this review we included 155 papers, the majority originating from high-impact papers on the synthesis and biological modes of platinum(II) and gold(III) compounds. Among them, 17 papers were highlighted to give an introduction to the use of Pt and Au compounds with medicinal properties, mainly focussing on coordination compounds. The synthesis and medicinal properties of organometallic compounds of various metals (such as Fe, Ru, Ti) were outlined in 51 papers. These compounds included metallocenes, metallo- arenes, metallo-carbonyls, metallo-carbenes (e.g. N-heterocyclic carbenes), and alkynyl complexes. The C^N, C^N^C, C^N^N and C^N^S pincer complexes of platinum( II) (46 papers) and gold(III) (44 papers) were discussed concerning their synthesis, stability and advantages to develop therapeutic compounds. We strove to show the consistent development of C^N, C^N^C, C^N^N and C^N^S platinum(II) and gold(III) pincer complexes regarding their synthesis and biological modes from the early beginnings to the most recent findings. CONCLUSION: This review supplies a profound overview of the development of organometallic compounds for medicinal purposes, setting special focus to the synthesis and stability of C^N, C^N^C, C^N^N and C^N^S pincer complexes of platinum(II) and gold(III) and their use as anticancer agents.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Compuestos de Oro/química , Compuestos de Oro/farmacología , Compuestos de Platino/química , Compuestos de Platino/farmacología , Animales , Humanos , Estructura Molecular
20.
Bioorg Med Chem ; 25(20): 5452-5460, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28823538

RESUMEN

A family of cyclometalated Au(III) complexes featuring a tridentate C^N^C scaffold has been synthesized and characterized. Microwave assisted synthesis of the ligands has also been exploited and optimized. The biological properties of the thus formed compounds have been studied in cancer cells and demonstrate generally moderate antiproliferative effects. Initial mechanistic insights have also been gained on the gold complex [Au(C^N^C)(GluS)] (3), and support the idea that the thioredoxin system may be a target for this family of compounds together with other relevant intracellular thiol-containing molecules.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Compuestos Orgánicos de Oro/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Compuestos Orgánicos de Oro/síntesis química , Compuestos Orgánicos de Oro/química , Oxidación-Reducción , Relación Estructura-Actividad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA