Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Harmful Algae ; 137: 102678, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39003029

RESUMEN

Raphidiopsis blooms are notorious for cyanotoxin formation and strong invasiveness, threatening the stability of aquatic ecosystems and human health. The protozoa Paramecium can potentially serve as an organism for controlling Raphidiopsis blooms owing to its grazing effect. However, the grazing ability of Paramecium is largely determined by the size of the prey, and the population of Raphidiopsis consists of filaments of varying lengths and sizes. The selective grazing behavior of Paramecium toward short-length or small-sized filaments in the Raphidiopsis population, as opposed to long filaments, remains unclear. Therefore, in this study, we co-cultured the predator Paramecium sp. with different initial abundances and the prey Raphidiopsis raciborskii to explore this knowledge gap. Our results suggested that: (1) the population of R. raciborskii declined under the selective grazing effect of Paramecium sp. on short filaments, whereas R. raciborskii with long filaments survived; (2) the growth of Paramecium sp. feeding on the same abundance of R. raciborskii was reduced at higher initial abundances, whereas its carrying capacity exhibited an opposite trend; (3) under ingestion by Paramecium sp., the morphology of R. raciborskii developed in the direction of becoming larger, and higher initial abundances of Paramecium sp. intensified this process; (4) increasing initial abundance of Paramecium sp. aggravated the decline of R. raciborskii photosynthetic activity. Therefore, the grazing effect of Paramecium sp. on R. raciborskii mainly affects filaments of short length or small size. Collectively, these results clarify the inter-species interaction between the protozoa Paramecium and filamentous cyanobacteria Raphidiopsis, including population dynamics and morphological and physiological changes in the predator and prey. Such insights into the interactions between Paramecium and R. raciborskii may have implications for the biological control of blooms caused by filamentous cyanobacteria.


Asunto(s)
Paramecium , Paramecium/fisiología , Cianobacterias/fisiología , Cadena Alimentaria , Conducta Predatoria/fisiología
2.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794058

RESUMEN

Cyanobacteria bloom is the term used to describe an abnormal and rapid growth of cyanobacteria in aquatic ecosystems such as lakes, rivers, and oceans as a consequence of anthropic factors, ecosystem degradation, or climate change. Cyanobacteria belonging to the genera Microcystis, Anabaena, Planktothrix, and Nostoc produce and release toxins called microcystins (MCs) into the water. MCs can have severe effects on human and animal health following their ingestion and inhalation. The MC structure is composed of a constant region (composed of five amino acid residues) and a variable region (composed of two amino acid residues). When the MC variable region is composed of arginine and leucine, it is named MC-LR. The most-common methods used to detect the presence of MC-LR in water are chromatographic-based methods (HPLC, LC/MS, GC/MS) and immunological-based methods (ELISA). In this work, we developed a new competitive Förster resonance energy transfer (FRET) assay to detect the presence of traces of MC-LR in water. Monoclonal antibody anti-MC-LR and MC-LR conjugated with bovine serum albumin (BSA) were labeled with the near-infrared fluorophores CF568 and CF647, respectively. Steady-state fluorescence measurements were performed to investigate the energy transfer process between anti-MC-LR 568 and MC-LR BSA 647 upon their interaction. Since the presence of unlabeled MC-LR competes with the labeled one, a lower efficiency of FRET process can be observed in the presence of an increasing amount of unlabeled MC-LR. The limit of detection (LoD) of the FRET assay is found to be 0.245 nM (0.245 µg/L). This value is lower than the provisional limit established by the World Health Organization (WHO) for quantifying the presence of MC-LR in drinking water.


Asunto(s)
Agua Potable , Transferencia Resonante de Energía de Fluorescencia , Toxinas Marinas , Microcistinas , Microcistinas/análisis , Microcistinas/inmunología , Transferencia Resonante de Energía de Fluorescencia/métodos , Agua Potable/análisis , Agua Potable/química , Toxinas Marinas/análisis , Cianobacterias/química , Humanos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química
3.
Water Environ Res ; 96(2): e10991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291777

RESUMEN

The cyanobacterial response to flow velocity or light intensity deviates from the combined effect of both factors. The responses of Microcystis aeruginosa to different combinations of flow velocities and light intensities were tested. Growth (OD730 and protein), stress (catalase, ascorbate peroxidase, and glutathione peroxidase), and photosynthetic ability (chlorophyll-a and fluorescence) parameters of M. aeruginosa were measured to evaluate the effects of different combinations. Exposure to different flow velocity-light combinations significantly affected the growth and physiology of M. aeruginosa. Flow velocities of 0.4 m s-1 showed a prominent influence on most of the measured parameters compared with no flow velocity or higher flow velocity conditions. The 1.2-m s-1 flow velocity and high light intensity (1200 µmol m-2  s-1 ) exposure caused a significant elevation in oxidative stress. Lower velocities are beneficial for M. aeruginosa at light stress, whereas extreme velocities are adverse and elevate the stress. Two categories of light-velocity combinations were identified as preferred and extreme categories, depending on whether they suppressed or supported M. aeruginosa growth. In controlling cyanobacteria blooms using flow or high-intensity light, it is imperative to consider the interaction of these two factors, as their combined effects can significantly vary the stress levels in cyanobacteria. A new system, designed to minimize mechanical damage on M. aeruginosa, was used to generate flow velocities. Additionally, the combined effects of flow velocities and light intensities have been considered for the first time. PRACTITIONER POINTS: Flow velocity can influence the effect of light on Microcystis aeruginosa. High light exposure effect on Microcystis aeruginosa can be reduced by low flow velocity. High flow velocity and high light exposure increase the stress on Microcystis aeruginosa. Different light intensities and flow velocity combinations changed Microcystis aeruginosa stress physiology.


Asunto(s)
Cianobacterias , Microcystis , Cianobacterias/metabolismo , Clorofila A , Luz
4.
Chemosphere ; 338: 139446, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423414

RESUMEN

The health of the aquatic ecosystem has recently been severely affected by cyanobacterial blooms brought on by eutrophication. Therefore, it is critical to develop efficient and secure methods to control dangerous cyanobacteria, such as Microcystis aeruginosa. In this research, we tested the inhibition of M. aeruginosa growth by a Scenedesmus sp. strain isolated from a culture pond. Scenedesmus sp. culture filtrate that had been lyophilized was added to M. aeruginosa, and cultivation for seven days, the cell density, chlorophyll a (Chl-a) concentration, maximum quantum yield of photosystem II (Fv/Fm), the activities of superoxide dismutase (SOD), catalase (CAT), and the concentration of malondialdehyde (MDA) and glutathione (GSH) were measured. Moreover, non-targeted metabolomics was carried out to provide light on the inhibitory mechanism in order to better understand the metabolic response. According to the results, M. aeruginosa is effectively inhibited by the lyophilized Scenedesmus sp. culture filtrate at a rate of 51.2%. Additionally, the lyophilized Scenedesmus sp. clearly inhibit the photosystem and damages the antioxidant defense system of M. aeruginosa cells, resulting in oxidative damage, which worsens membrane lipid peroxidation, according to changes in Chl-a, Fv/Fm, SOD, CAT enzyme activities and MDA, GSH. Metabolomics analysis revealed that the secondary metabolites of Scenedesmus sp. significantly interfere with the metabolism of M. aeruginosa involved in amino acid synthesis, membrane creation and oxidative stress, which is coherent with the morphology and physiology outcomes. These results demonstrate that the secondary metabolites of Scenedesmus sp. exert algal inhibition effect by breaked the membrane structure, destroyed the photosynthetic system of microalgae, inhibited amino acid synthesis, reduced antioxidant capacity, and eventually caused algal cell lysis and death. Our research provides a reliable basis for the biological control of cyanobacterial blooms on the one hand, and on other hand supply application of non-targeted metabolome on the study of microalgae allelochemicals.


Asunto(s)
Cianobacterias , Microalgas , Microcystis , Scenedesmus , Antioxidantes/farmacología , Clorofila A , Ecosistema , Cianobacterias/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión/farmacología , Microalgas/metabolismo , Metabolómica , Aminoácidos/farmacología
5.
Math Biosci Eng ; 20(1): 930-954, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36650796

RESUMEN

Within the framework of physical and ecological integrated control of cyanobacteria bloom, because the outbreak of cyanobacteria bloom can form cyanobacteria clustering phenomenon, so a new aquatic ecological model with clustering behavior is proposed to describe the dynamic relationship between cyanobacteria and potential grazers. The biggest advantage of the model is that it depicts physical spraying treatment technology into the existence pattern of cyanobacteria, then integrates the physical and ecological integrated control with the aggregation of cyanobacteria. Mathematical theory works mainly investigate some key threshold conditions to induce Transcritical bifurcation and Hopf bifurcation of the model (2.1), which can force cyanobacteria and potential grazers to form steady-state coexistence mode and periodic oscillation coexistence mode respectively. Numerical simulation works not only explore the influence of clustering on the dynamic relationship between cyanobacteria and potential grazers, but also dynamically show the evolution process of Transcritical bifurcation and Hopf bifurcation, which can be clearly seen that the density of cyanobacteria decreases gradually with the evolution of bifurcation dynamics. Furthermore, it should be worth explaining that the most important role of physical spraying treatment technology can break up clumps of cyanobacteria in the process of controlling cyanobacteria bloom, but cannot change the dynamic essential characteristics of cyanobacteria and potential grazers represented by the model (2.1), this result implies that the physical spraying treatment technology cannot fundamentally eliminate cyanobacteria bloom. In a word, it is hoped that the results of this paper can provide some theoretical support for the physical and ecological integrated control of cyanobacteria bloom.


Asunto(s)
Cianobacterias , Modelos Teóricos , Simulación por Computador
6.
Chemosphere ; 307(Pt 4): 136122, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029861

RESUMEN

In recent years, due to the intensification of human activities, water ecological problems are gradually increasing. As the third largest freshwater lake in China, Lake Taihu is an important drinking water source for several densely populated cities in China. The prominent water ecological problem in this area is mainly Cyanobacteria Bloom. Cyanobacterial blooms have been erupting which have affected local residents' drinking water and caused losses to the national economy. Based on the interpretation results of MODIS data in the Lake Taihu region from 2004 to 2014, this paper analyzes the main driving factors of cyanobacterial bloom are phosphorus and potassium through the correlation analysis of nitrogen, phosphorus, potassium and cyanobacteria area, normalizes nutrient, and identifies that the water level of Lake Taihu is the influencing factor of cyanobacterial bloom. A Lake Taihu cyanobacteria bloom hazard function is constructed to quantitatively assess the losses (economic losses) caused by cyanobacterial blooms from 2001 to 2012, supporting for cyanobacteria control management in Lake Taihu.


Asunto(s)
Cianobacterias , Agua Potable , China , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Eutrofización , Humanos , Lagos/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis
7.
Harmful Algae ; 114: 102218, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550297

RESUMEN

Some species of algae such as cyanobacteria can vertically migrate through water during a day, which is a notable floating feature of harmful algae blooms. To date, this process has been observed and quantified using visible and near-infrared (VNIR) bands from spaceborne sensors with high temporal resolution (i.e., Geostationary Ocean Color Imager; GOCI). In this study, we conducted an in-situ measurement at Taihu Lake in China to investigate the ultraviolet (UV) reflection spectra of floating cyanobacteria blooms, and identified that they have significant UV reflection features (higher than that of background water) associated with their floating status. This has been demonstrated using spaceborne UV images at both 355 and 385 nm from the Ultraviolet Imager (UVI) onboard Haiyang-1C (HY-1C) of China. Compared with synchronous optical images from the Chinese Ocean Color and Temperature Scanner (COCTS), we found that UVI has a special ability to distinguish cyanobacteria floating on water surface. Additionally, the intensity of the UV signals obtained is positively correlated with the cyanobacterial equivalent density. Ultraviolet remote sensing, therefore, can work as a new approach for the detection of harmful algae blooms and help determine the floating status of them, which deserves further research.


Asunto(s)
Cianobacterias , Agua , Monitoreo del Ambiente/métodos , Floraciones de Algas Nocivas , Lagos/microbiología , Rayos Ultravioleta
8.
Chemosphere ; 301: 134659, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35447209

RESUMEN

The control of cyanobacteria blooms is a global challenge. Here, we reported the efficient inhibition of M. aeruginosa by fumaric acid (FA), an intermediate metabolite of the tricarboxylic acid cycle. FA showed strong algicidal activity with an inhibition rate of 90.5% on the 8th day at a dose of 40 mg/L. The presence of FA caused severe membrane damage, as suggested by the fluorescence flow cytometry and morphology analysis. FA inhibited the formation of chlorophyll a, interrupting the photosynthesis system. It also induced oxidative stress in cells. Principal component analysis of the indicators suggested that the FA-treated sample had a significantly different inhibitory pattern than the acid-treated sample. Thus, the inhibitory effect was not solely caused by the pH effect. Untargeted metabolomic analysis revealed that 31 metabolites were differentially expressed in response to FA stress, which were mainly involved in the metabolite processes and the membranes. A commercial food-grade FA was able to inhibit the growth of M. aeruginosa similar to the analytical-grade FA. Our results suggest that FA can be potentially an efficient and low-risk chemical for inhibiting M. aeruginosa growth, which may find future applications in cyanobacteria bloom control.


Asunto(s)
Cianobacterias , Microcystis , Clorofila A/metabolismo , Cianobacterias/metabolismo , Fumaratos , Pseudomonas aeruginosa
9.
Harmful Algae ; 111: 102170, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35016758

RESUMEN

Microcystis and Aphanizomenon are two toxic cyanobacteria genera, which frequently cause blooms in freshwater lakes. In some cases, succession of these two genera was observed in natural water bodies. Among the diverse factors contributing to such succession of dominant cyanobacterial genera, an allelopathic effect was proposed to be involved after the growth inhibitory effect of several Microcystis species on A. flos-aquae was investigated. However, the response of target species exposed to Microcystis are poorly described. In the present study, we used two toxic cyanobacteria strains, Aphanizomenon flos-aquae (Aph1395) and Microcystis aeruginosa strain 905 (Ma905) as research subjects. Aph1395 was inhibited with a necessarily concentrated culture filtrate of Ma905 (MA905-SPE), and the response of the inhibited Aph1395 cells was explored via non-targeted metabolomic profiling. In total, 3735 features were significantly different in the Aph1395 treated with Ma905-SPE vs. those treated with BG11 medium. Among them, the annotations of 146 differential features were considered to be confident via MS/MS spectrum matching analysis. Based on the reported physiological functions of the annotated differential features, we proposed a putative model that in the growth-inhibited Aph1395, a suite of increased or decreased features with activities in apoptosis, growth inhibition, and stress response processes contributed to, or defended against, the allelopathic effect caused by Ma905. Our findings provide insights into the interaction between the bloom forming cyanobacterial species that share the same ecological environment.


Asunto(s)
Aphanizomenon , Cianobacterias , Microcystis , Humanos , Lagos , Espectrometría de Masas en Tándem
10.
Artículo en Inglés | MEDLINE | ID: mdl-34948971

RESUMEN

Cyanobacterial blooms can be stimulated by excessive phosphorus (P) input, especially when diazotrophs are the dominant species. A series of mesocosm experiments were conducted in a lake dominated by a cyanobacteria bloom to study the effects of Phoslock®, a phosphorus adsorbent. The results showed that the addition of Phoslock® lowered the soluble reactive phosphate (SRP) concentrations in water due to efficient adsorption and mitigated the blooms. Once settled on the sediments, Phoslock® serves as a barrier to reduce P diffusion from sediments into the overlying waters. In short-term (1 day) incubation experiments, Phoslock® diminished or reversed SRP effluxes from bottom sediments. At the same time, the upward movement of the oxic-anoxic interface through the sediment column slightly enhanced NH4+ release and depressed N2 release, suggesting the inhibition of nitrification and denitrification. In a long-term (28 days) experiment, Phoslock® hindered the P release, reduced the cyanobacterial abundance, and alleviated the bloom-driven enhancements in the pH and oxygen. These results suggest that, through suppression of internal nutrient effluxes, Phoslock® can be used as an effective control technology to reduce cyanobacteria blooms common to many freshwater systems.


Asunto(s)
Cianobacterias , Contaminantes Químicos del Agua , Eutrofización , Sedimentos Geológicos , Lagos , Nutrientes , Fósforo , Agua , Contaminantes Químicos del Agua/análisis
11.
J Environ Sci (China) ; 103: 255-267, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33743907

RESUMEN

In order to better understand the contribution of nutrients regeneration pathway, release potential and transformation pattern to cyanobacterial growth and succession, 7 sampling sites in Lake Chaohu with different bloom degree were studied every two months from February to November 2018. The carbon, nitrogen (N) and phosphorus (P) forms or fractions in surface, interstitial water and sediments as well as extracellular enzymatic activities, P sorption, specific microbial abundance and community composition in sediments were analyzed. P regeneration pathway was dominated by iron-bound P desorption and phosphorus-solubilizing bacteria solubilization in severe-bloom and slight-bloom area respectively, which both resulted in high soluble reactive phosphorus (SRP) accumulation in interstitial water. However, in severe-bloom area, higher P release potential caused the strong P release and algal growth, compared to slight-bloom area. In spring, P limitation and N selective assimilation of Dolichospermum facilitated nitrate accumulation in surface water, which provided enough N source for the initiation of Microcystis bloom. In summer, the accumulated organic N in Dolichospermum cells during its bloom was re-mineralized as ammonium to replenish N source for the sustainable development of Microcystis bloom. Furthermore, SRP continuous release led to the replacement of Dolichospermum by Microcystis with the advantage of P quick utilization, transport and storage. Taken together, the succession from Dolichospermum to Microcystis was due to both the different forms of N and P in water column mediated by different regeneration and transformation pathways as well as release potential, and algal N and P utilization strategies.


Asunto(s)
Cianobacterias , Microcystis , China , Eutrofización , Lagos , Nutrientes , Fósforo/análisis
12.
Huan Jing Ke Xue ; 42(1): 242-250, 2021 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-33372476

RESUMEN

Connected rivers are a common engineering method to ensure the ecological health of urban water. However, for the lakes with serious cyanobacteria blooms, the algal particles are carried by the outflow of the lake and will have a significant impact on water quality. The location at which the Liangxi river meets Meiliang Bay of Lake Taihu was selected to explore the influence of the eutrophic lake on the connected rivers, and high-frequency monitoring was conducted in summer for three consecutive years to analyze the changes in the flux of cyanobacterial bloom particles in rivers and their impact on river water quality. The results show that:① The improvement of the algal cyanobacteria bloom in Meiliang Bay and the operation of the pressure-controlled algae well at the entrance of the river significantly reduced the concentration of chlorophyll a and the flux of algae particles in the Liangxi River. The average value of the concentration of chlorophyll a and the flux of algae particles in the river in summer 2019 were 54.34 µg·L-1 and 84.7 t·d-1, respectively, and significantly lower than those of 2017; ② Water diversion had a significant effect on improving the water quality of the receiving water. Except for DTP, the nitrogen and phosphorus concentrations of the remaining forms of the Liangxi River showed a downward trend from 2017 to 2019, indicating that the water quality of the Liangxi river improved after water transfer; ③ A large amount of cyanobacterial blooms entering the channel significantly increased the particulate nitrogen and phosphorus content of the water. From 2017 to 2019, the nitrogen and phosphorus in the Liangxi River were mainly PN and PP, accounting for 62.5% and 70.8% of TN and TP, respectively; ④ The water quality of the Beijing-Hangzhou Grand Canal and other connected rivers has not been affected by the algal particles in Meiliang Bay. In August 2019, the chlorophyll a content in the canal water decreased by 65% compared with that of June, indicating that cyanobacterial bloom particles have not accumulated in the Grand Canal; ⑤ On the premise that the cyanobacteria bloom in the lake has not been effectively improved, the algae particles carried by the water diversion will have an impact on the water quality and landscape of the local reach connecting the river.


Asunto(s)
Lagos , Ríos , Beijing , China , Clorofila A , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Calidad del Agua
13.
Toxins (Basel) ; 12(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182627

RESUMEN

Chitosan has been tested as a coagulant to remove cyanobacterial nuisance. While its coagulation efficiency is well studied, little is known about its effect on the viability of the cyanobacterial cells. This study aimed to test eight strains of the most frequent bloom-forming cyanobacterium, Microcystis aeruginosa, exposed to a realistic concentration range of chitosan used in lake restoration management (0 to 8 mg chitosan L-1). We found that after 1 h of contact with chitosan, in seven of the eight strains tested, photosystem II efficiency was decreased, and after 24 h, all the strains tested were affected. EC50 values varied from 0.47 to > 8 mg chitosan L-1 between the strains, which might be related to the amount of extracellular polymeric substances. Nucleic acid staining (Sytox-Green®) illustrated the loss of membrane integrity in all the strains tested, and subsequent leakage of pigments was observed, as well as the release of intracellular microcystin. Our results indicate that strain variability hampers generalization about species response to chitosan exposure. Hence, when used as a coagulant to manage cyanobacterial nuisance, chitosan should be first tested on the natural site-specific biota on cyanobacteria removal efficiency, as well as on cell integrity aspects.


Asunto(s)
Quitosano/toxicidad , Microcystis/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Quitosano/química , Clorofila A/metabolismo , Floculación , Microcistinas/metabolismo , Microcystis/química , Microcystis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
14.
J Environ Sci (China) ; 94: 171-178, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32563481

RESUMEN

Phosphine (PH3) is an important factor driving the outbreak of cyanobacterial blooms that produce toxic microcystin threating human health. To clarify the physiological and biochemical responses of cyanobacteria to PH3 under elevated CO2 concentration, Microcystis aeruginosa was used in the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations respectively. The chlorophyll a (Chl-a), carotenoid, net photosynthetic rate and total protein of M. aeruginosa exhibited evidently increasing tendency under the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations (7.51 × 10-3, 2.48 × 10-2, 7.51 × 10-2 mg/L). The coupling treatments resulted in the higher concentrations of Chl-a and carotenoid of M. aeruginosa, compared to those in the control and the treatment with CO2 alone, and their enhancement increased with the increase in PH3 concentrations. The total antioxidant capacity (T-AOC) in the coupling treatment with CO2 and PH3 of 2.48 × 10-2 mg/L and 7.51 × 10-3 mg/L showed increasing tendency, compared to the treatment with PH3 alone. Additionally, the coupling treatment with 1000 ppmv CO2 and PH3 also altered the pH and DO level in the culture medium. In this regard, the coupling treatment with CO2 and PH3 at an appropriate concentration can enhance the resistance of M. aeruginosa to PH3 toxicity and is beneficial to the reproduction of M. aeruginosa, presumably resulting in potential for the outbreak of cyanobacteria bloom. Given the concern about global warming and the increase in atmospheric CO2 level, our research laid a foundation for the scientific understanding of the correlation between PH3 and cyanobacteria blooms.


Asunto(s)
Microcystis , Dióxido de Carbono , Clorofila A , Concentración de Iones de Hidrógeno , Microcistinas , Fosfinas
15.
Harmful Algae ; 92: 101710, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32113609

RESUMEN

Cyanobacteria are notorious for producing water blooms and for toxin formation. Toxic cyanobacterial blooms present an ever-increasing serious threat to both the quality of drinking water and recreational uses and severely disrupt aquatic ecosystems, worldwide. In many cases, such blooms are dominated by toxic Microcystis sp. that produce a family of structurally similar hepatotoxins, known as microcystins (MCs). Here we present a retrospective analysis of Microcystis seasonal blooms from Lake Kinneret (Sea of Galilee, Israel) indicating that the population is composed of at least 25 different genotypes and two different chemo-types, whose relative abundance changes over decades. Based on a long-term record of biotic and abiotic parameters and laboratory experiments we propose that minor increase in water temperature, but not in salinity, may affect Microcystis community structure by changing the relative abundance of species/strains from toxic to less or non-toxic species.


Asunto(s)
Microcystis , Ecosistema , Estudios Retrospectivos , Estaciones del Año , Temperatura
16.
Ecotoxicol Environ Saf ; 176: 125-131, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30925328

RESUMEN

The roles dissolved organic matter play when managing watersheds and controlling cyanobacteria blooms have been overlooked. We assessed the effects of dissolved organic matter extracted from biochar, paddy soil, pectin, and rice husks, at carbon concentrations of 0, 1, 3, 5, and 10 mg L-1 on Microcystis aeruginosa growth, photosynthesis, and physiological characteristics. The dissolved organic matter derived from paddy soil and rice husks increased M. aeruginosa growth by promoting photosynthesis. Biochar at low carbon concentrations (1, 3, and 5 mg L-1) also improved M. aeruginosa growth by increasing the maximum photosynthesis II quantum yield. However, biochar at a high concentration decreased the protein and RNA concentrations in M. aeruginosa and therefore inhibited the increase in M. aeruginosa biomass. Pectin did not affect M. aeruginosa photosynthesis, protein concentration, RNA concentration, or growth. The results suggested that M. aeruginosa growth was improved by the amino acids tryptophan and tyrosine, decreased by abundant humic-acid-like substances, and unaffected by polysaccharides.


Asunto(s)
Microcystis/fisiología , Compuestos Orgánicos/metabolismo , Aminoácidos/metabolismo , Biomasa , Carbono/análisis , Carbono/metabolismo , Sustancias Húmicas , Microcystis/química , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Compuestos Orgánicos/análisis , Fotosíntesis/fisiología
17.
Environ Sci Pollut Res Int ; 26(11): 11012-11028, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30788703

RESUMEN

High-frequency and reliable data on cyanobacteria blooming over a long time period is crucial to identify the outbreak mechanism of blooms and to forecast future trends. However, in cloudy and rainy areas, it is difficult to retrieve useful satellite images, especially in the rainy season. To address this problem, we used data from the HJ-1/CCD (Chinese environment and disaster monitoring and forecasting satellite/charge coupled device), GF-1/WFV (Chinese high-resolution satellite/wide field of view), and Landsat-8/OLI (Operational Land Imager) satellites to generate a time series of the bloom area from 2009 to 2016 in Dianchi Lake, China. We then correlated the responses of bloom dynamics to meteorological factors. Several findings can be drawn: (1) a higher bloom frequency and a larger bloom area occurred in 2011, 2013, and 2016, compared to the other years; (2) the frequency of blooms peaked in April, August, and November each year and expanded from north to south starting in July; (3) air temperature in spring and sunshine hours in summer greatly correlated to the yearly bloom area; (4) wind speed and sunshine hours strongly affected the short-term expansion of blooms and thereafter influenced the monthly bloom scale; and (5) rainfall had a strong short-term influence on the occurrence of blooms. Cyanobacteria blooms often occurred when wind speeds were less than 2.35 ± 0.78 m/s in the dry season and 2.01 ± 0.75 m/s in the rainy season, when there were 48 to 72 h of sunshine in the dry season and 35 to 57 h of sunshine in the rainy season, and when there was more than 10 mm of daily precipitation.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Eutrofización , Lagos/microbiología , Lluvia , Imágenes Satelitales , China , Estaciones del Año , Temperatura , Viento
18.
Environ Pollut ; 247: 165-171, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30669084

RESUMEN

The frequent outbreaks of cyanobacteria bloom are often accompanied by the generation and release of reduced phosphorus species (e.g., phosphine), which raises interesting questions regarding their potential algae-related effects. To clarify the physiological and biochemical responses of cyanobacteria to phosphine, Microcystis aeruginosa was treated with different concentrations of phosphine. Net photosynthetic rate, total antioxidant capacity (T-AOC), catalase (CAT) activity, and the concentrations of chlorophyll a, carotenoid and total protein were investigated and scanning electron microscopy (SEM) was conducted to elucidate the physiological and biochemical responses of M. aeruginosa to phosphine. The results showed that phosphine was beneficial to the growth of algal cells after M. aeruginosa acclimatized to the treatment of phosphine, and treatment with 2.48 × 10-2 mg/L phosphine had a greater positive effect on the growth and reproduction of M. aeruginosa than 7.51 × 10-3 mg/L phosphine, in which most algal cells were smooth and flat on day 16. Treatment with the high concentration of phosphine (7.51 × 10-2 mg/L) for 16 d reduced T-AOC, CAT activity, net photosynthetic rate, and the concentrations of chlorophyll a, carotenoid and total protein of M. aeruginosa to the minimums, resulting in the lysis and death of M. aeruginosa cells, which indicates phosphine has a toxic effect on the growth of algal cells. However, the high concentration of phosphine (7.51 × 10-2 mg/L) had a greater positive effect on the growth of M. aeruginosa cells than the lower two (7.51 × 10-3 mg/L and 2.48 × 10-2 mg/L) from 3 d to 12 d. Our findings provide insight into how phosphine potentially affects the growth of M. aeruginosa cells and the important roles of elevated phosphine on the outbreak of cyanobacteria bloom.


Asunto(s)
Microcystis/efectos de los fármacos , Microcystis/crecimiento & desarrollo , Fosfinas/toxicidad , Carotenoides , Clorofila/metabolismo , Clorofila A , Cianobacterias/metabolismo , Oxidación-Reducción , Fósforo/metabolismo , Fotosíntesis/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-30477244

RESUMEN

High cyanobacteria-derived dissolved organic carbon (DOC) in source water can cause drinking water quality to deteriorate, producing bad taste, odor, toxins, and possibly elevated levels of disinfection byproduct (DBP) precursors. Conventional water treatment processes do not effectively remove algal organic substances. In this study, rapid-sand-filtration effluent from a water treatment plant on Kinmen Island, where serious cyanobacterial blooms occurred, was used to evaluate the DOC- and DBP-removal efficiency of ozonation and/or biofiltration. To simulate a small-scale water distribution system following water treatment, 24 h simulated distribution system (SDS) tests were conducted. The following DBPs were analyzed: trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and trichloronitromethane (TCNM). Applying biological activated-carbon filtration (BAC) on its own achieved the greatest reduction in SDS-DBPs. Ozonation alone caused adverse effects by promoting THM, HAA, and TCNM formation. Ozonation and BAC filtration yielded better DOC removal (51%) than BAC filtration alone (41%). Considering the cost of ozonation, we suggest that when treating high cyanobacterial organic matter in water destined for a small-scale water distribution system, BAC biofiltration alone could be an efficient, economical option for reducing DBP precursors. If DOC removal needs to be improved, preceding ozonation could be incorporated.


Asunto(s)
Cianobacterias/metabolismo , Filtración , Ozono , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Carbón Orgánico , Eutrofización , Eliminación de Residuos Líquidos
20.
Antonie Van Leeuwenhoek ; 111(12): 2425-2440, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30069722

RESUMEN

The Carpathian Basin is a lowland plain located mainly in Hungary. Due to the nature of the bedrock, alluvial deposits, and a bowl shape, many lakes and ponds of the area are characterized by high alkalinity. In this study, we characterized temporal changes in eukaryal and bacterial community dynamics with high throughput sequencing and relate the changes to environmental conditions in Lake Velence located in Fejér county, Hungary. The sampled Lake Velence microbial populations (algal and bacterial) were analyzed to identify potential correlations with other community members and environmental parameters at six timepoints over 6 weeks in the Spring of 2012. Correlations between community members suggest a positive relationship between certain algal and bacterial populations (e.g. Chlamydomondaceae with Actinobacteria and Acidobacteria), while other correlations allude to changes in these relationships over time. During the study, high nitrogen availability may have favored non-nitrogen fixing cyanobacteria, such as the toxin-producing Microcystis aeruginosa, and the eutrophic effect may have been exacerbated by high phosphorus availability as well as the high calcium and magnesium content of the Carpathian Basin bedrock, potentially fostering exopolymer production and cell aggregation. Cyanobacterial bloom formation could have a negative environmental impact on other community members and potentially affect overall water quality as well as recreational activities. To our knowledge, this is the first prediction for relationships between photoautotrophic eukaryotes and bacteria from an alkaline, Hungarian lake.


Asunto(s)
Cianobacterias/genética , Eutrofización , Lagos/microbiología , Consorcios Microbianos/genética , Phaeophyceae/genética , Filogenia , Acidobacteria/clasificación , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Acidobacteria/metabolismo , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Álcalis/química , Calcio/química , Calcio/metabolismo , Chlorophyceae/clasificación , Chlorophyceae/genética , Chlorophyceae/metabolismo , Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , ADN de Algas/genética , ADN Bacteriano/genética , Hungría , Concentración de Iones de Hidrógeno , Magnesio/química , Magnesio/metabolismo , Microcystis/clasificación , Microcystis/genética , Microcystis/aislamiento & purificación , Microcystis/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Phaeophyceae/clasificación , Phaeophyceae/aislamiento & purificación , Phaeophyceae/metabolismo , Fósforo/química , Fósforo/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA