Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2406464, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140781

RESUMEN

The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field has not been examined, which hinders further applications. Here, the study demonstrates the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe4 and above-room-temperature ferromagnet Fe3GaTe2. The fully field-free switching can be achieved at 2.56 × 1010 A m-2 at 300 K and a large SOT effective field efficiency of the out-of-plane polarized spin current generated by TaIrTe4 is determined to be 0.37. Moreover, it is found that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252 mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. The work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices.

2.
ACS Appl Mater Interfaces ; 15(34): 40792-40798, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37595054

RESUMEN

Nano- and microstructures based on ferrimagnets can demonstrate high efficiency and dynamics of current-induced magnetization switching combined with high stability of spin textures such as bubble domains and skyrmions, which are of practical importance for the development of spintronics and spin-orbitronics. This set of features is usually associated with magnetic momentum or angular momentum compensation states. Here, we experimentally show that the compensation state can be realized locally using nonuniform Joule heating. This effect is observed in the variable-width current guide made of the ferrimagnetic W/Co76Tb24/Ru thin films, where the position of a region heated to the compensation temperature depends linearly on the current pulse amplitude. This approach makes it possible to observe the simultaneous coexistence of Co-dominant and Tb-dominant regions, where current pulses induce spin-orbit torques in opposite directions, leading to local magnetization switching. It is found that the position of a Néel domain wall constraining the switched region lies in the vicinity of the coordinate corresponding to the compensation point but does not coincide with it due to high mobility under the action of spin current. Our findings open an alternative approach for engineering of ferrimagnetic nanodevices with advanced properties for future applications in spintronics, spin-orbitronics, and nanoelectronics.

3.
Nano Lett ; 23(8): 3394-3400, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37043331

RESUMEN

Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs. Here we confirm the MWSM state of high-quality Co2MnGa film by systematically investigating the transport measurements and demonstrating that the magnetization and topology of Co2MnGa can be electrically manipulated. The electrical and magnetic optical measurements further reveal that the current-induced SOT switches the topological magnetic state in a 180-degree manner by applying positive/negative current pulses and in a 90-degree manner by alternately applying two orthogonal current pulses. This work opens up more opportunities for spintronic applications based on topological materials.

4.
ACS Nano ; 17(7): 6400-6409, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36942968

RESUMEN

Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnxPtyGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers. The perpendicular magnetization of the MPG single layer can be reversibly switched by electrical current pulses with a magnitude as low as 4.1 × 1010Am-2, as evidenced by both the electrical transport and the magnetic optical measurements. The switching is shown to arise from inversion symmetry breaking due to the vertical composition gradient of the films after sample annealing. The SOT effective fields of the samples are analyzed systematically. It is found that the SOT efficiency increases with the film thickness, suggesting a robust bulk-like behavior in the single magnetic layer. Furthermore, a memristive characteristic has been observed due to a multidomain switching property in the single-layer MPG device. Additionally, deterministic field-free switching of magnetization is observed when the electric current flows orthogonal to the direction of the in-plane compositional gradient due to the in-plane symmetry breaking. This work proves that the MPG is a good candidate to be utilized in high-density and efficient magnetoresistive random access memory devices and other spintronic applications.

5.
Adv Mater ; 34(8): e2101730, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34908193

RESUMEN

Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source with a large SOT efficiency (ξ) and electrical conductivity (σ), and an efficient spin injection across a transparent interface. Herein, single crystals of the van der Waals (vdW) topological semimetal WTe2  and vdW ferromagnet Fe3 GeTe2 are used to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface. The results exhibit values of ξ ≈ 4.6 and σ ≈ 2.25 × 105  Ω-1 m-1 for WTe2 . Moreover, the significantly reduced switching current density of 3.90 × 106 A cm-2 at 150 K is obtained, which is an order of magnitude smaller than those of conventional heavy-metal/ferromagnet thin films. These findings highlight that engineering vdW-type topological materials and magnets offers a promising route to energy-efficient magnetization control in SOT-based spintronics.

6.
ACS Appl Mater Interfaces ; 13(51): 61742-61750, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34905352

RESUMEN

Using a heavy-metal (HM) alloy layer in spin-orbit torque (SOT)-based devices is an effective method for obtaining a high current-spin conversion efficiency θSH. In this work, SOT-based spintronic devices with a Pt100-xRux-alloyed HM layer are studied by applying harmonic Hall measurements and magneto-optical Kerr effect microscopy to detect the θSH and to observe the process of current-induced magnetization switching. Both the highest θSH of 0.132 and the lowest critical current density (Jc) of 8 × 105 A/cm2 are realized in a device with x = 20, which satisfies the high SOT efficiency and low energy consumption simultaneously. The interfacial Dzyaloshinskii-Moriya interaction can be overcome by increasing the in-plane assist field. Meanwhile, the minimum in-plane field required for current-induced complete switching can be reduced to ±60 Oe. Our study reveals that using the Pt-Ru alloyed HM layer is an effective route for SOT application with enhanced performance.

7.
ACS Appl Mater Interfaces ; 13(15): 18294-18300, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33822573

RESUMEN

Current-induced spin-orbit torque (SOT) switching of magnetization has attracted great interest due to its potential application in magnetic memory devices, which offer low-energy consumption and high-speed writing. However, most of the SOT studies on perpendicularly magnetized anisotropy (PMA) magnets have been limited to heterostructures with interfacial PMA and poor thermal stability. Here, we experimentally demonstrate a SOT magnetization switching for a ferrimagnetic D022-Mn3Ge film with high bulk PMA and robust thermal stability factor under a critical current density of 6.6 × 1011 A m-2 through the spin Hall effect of an adjacent capping Pt and a buffer Cr layer. A large effective damping-like SOT efficiency of 2.37 mT/1010 A m-2 is determined using harmonic measurements in the structure. The effect of the double-spin source layers and the negative-exchange interaction of the ferrimagnet may explain the large SOT efficiency and the manifested magnetization switching of Mn3Ge. Our findings demonstrate that D022-Mn3Ge is a promising candidate for application in high-density SOT magnetic random-access memory devices.

8.
ACS Nano ; 14(8): 9389-9407, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32692151

RESUMEN

Spin-orbit torques (SOTs), which rely on spin current generation from charge current in a nonmagnetic material, promise an energy-efficient scheme for manipulating magnetization in magnetic devices. A critical topic for spintronic devices using SOTs is to enhance the charge to spin conversion efficiency. Besides, the current-induced spin polarization is usually limited to in-plane, whereas out-of-plane spin polarization could be favored for efficient perpendicular magnetization switching. Recent advances in utilizing two important classes of two-dimensional materials-topological insulators and transition-metal dichalcogenides-as spin sources to generate SOT shed light on addressing these challenges. Topological insulators such as bismuth selenide have shown a giant SOT efficiency, which is larger than those from three-dimensional heavy metals by at least 1 order of magnitude. Transition-metal dichalcogenides such as tungsten telluride have shown a current-induced out-of-plane spin polarization, which is allowed by the reduced symmetry. In this review, we use symmetry arguments to predict and analyze SOTs in two-dimensional material-based heterostructures. We summarize the recent progress of SOT studies based on topological insulators and transition-metal dichalcogenides and show how these results are in line with the symmetry arguments. At last, we identify unsolved issues in the current studies and suggest three potential research directions in this field.

9.
Adv Mater ; 32(16): e1907929, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32108384

RESUMEN

Current-induced magnetization switching by spin-orbit torque (SOT) holds considerable promise for next generation ultralow-power memory and logic applications. In most cases, generation of spin-orbit torques has relied on an external injection of out-of-plane spin currents into the magnetic layer, while an external magnetic field along the electric current direction is generally required for realizing deterministic switching by SOT. Here, deterministic current-induced SOT full magnetization switching by lateral spin-orbit torque in zero external magnetic field is reported. The Pt/Co/Pt magnetic structure is locally annealed by a laser track along the in-plane current direction, resulting in a lateral Pt gradient within the ferromagnetic layer, as confirmed by microstructure and chemical composition analysis. In zero magnetic field, the direction of the deterministic current-induced magnetization switching depends on the location of the laser track, but shows no dependence on the net polarization of external out-of-plane spin currents. From the behavior under external magnetic fields, two independent mechanisms giving rise to SOT are identified, i.e., the lateral Pt-Co asymmetry as well as out-of-plane injected spin currents, where the polarization and the magnitude of the SOT in the former case depends on the relative location and the laser power of the annealing track.

10.
Adv Mater ; 31(35): e1901681, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31282067

RESUMEN

Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx (FeCo)1- x by the topological insulator [Bi2 Se3 and (BiSb)2 Te3 ] is investigated at room temperature. The switching current density of (BiSb)2 Te3 (1.20 × 105 A cm-2 ) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx (FeCo)1- x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices.

11.
Nano Lett ; 16(5): 3109-15, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27046777

RESUMEN

In this work, we present an ingenious method to fabricate self-aligned nanoscale Hall devices using chemically synthesized nanowires as both etching and deposition masks. This versatile method can be extensively used to make nanoribbons out of arbitrary thin films without the need for extremely high alignment accuracy to define the metal contacts. The fabricated nanoribbon width scales with the mask nanowire width (diameter), and it can be easily reduced down to tens of nanometers. The self-aligned metal contacts from the sidewall extend to the top surface of the nanoribbon, and the overlap can be controlled by tuning the deposition recipe. To demonstrate the feasibility, we have fabricated Ta/CoFeB/MgO nanoribbons sputtered on a SiO2/Si substrate with different metal contacts, using synthesized SnO2 nanowires as masks. Anomalous Hall effect measurements have been carried out on the fabricated nanoscale Hall device in order to study the current-induced magnetization switching in the nanoscale heavy metal/ferromagnet heterostructure, which has shown distinct switching behaviors from micron-scale devices. The developed method provides a useful fabrication platform to probe the charge and spin transport in the nanoscale regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA