RESUMEN
Biomaterial scaffolds play a pivotal role in the advancement of cultured meat technology, facilitating essential processes like cell attachment, growth, specialization, and alignment. Currently, there exists limited knowledge concerning the creation of consumable scaffolds tailored for cultured meat applications. This investigation aimed to produce edible scaffolds featuring both smooth and patterned surfaces, utilizing biomaterials such as salmon gelatin, alginate, agarose and glycerol, pertinent to cultured meat and adhering to food safety protocols. The primary objective of this research was to uncover variations in transcriptomes profiles between flat and microstructured edible scaffolds fabricated from marine-derived biopolymers, leveraging high-throughput sequencing techniques. Expression analysis revealed noteworthy disparities in transcriptome profiles when comparing the flat and microstructured scaffold configurations against a control condition. Employing gene functional enrichment analysis for the microstructured versus flat scaffold conditions yielded substantial enrichment ratios, highlighting pertinent gene modules linked to the development of skeletal muscle. Notable functional aspects included filament sliding, muscle contraction, and the organization of sarcomeres. By shedding light on these intricate processes, this study offers insights into the fundamental mechanisms underpinning the generation of muscle-specific cultured meat.
Asunto(s)
Diferenciación Celular , Carne in Vitro , Andamios del Tejido , Transcriptoma , Animales , Alginatos/química , Materiales Biocompatibles/química , Biopolímeros , Gelatina/química , Perfilación de la Expresión Génica , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Salmón , Sefarosa/química , Andamios del Tejido/químicaRESUMEN
In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.
Asunto(s)
Residuos Industriales , Hidrolisados de Proteína , Animales , Carne in Vitro , Carne/análisis , Albúmina Sérica BovinaRESUMEN
Recently, many studies regarding consumer perception of cell-based meat have been published. However, the opinion of the professionals involved in animal production also seems relevant. In particular, veterinarians and animal scientists may be important players in the new cell-based meat production, acting as proponents or barriers to this major improvement for farm animal welfare. Therefore, our aim is to analyse the knowledge and perspective of Brazilian veterinarians and animal scientists regarding cell-based meat. Veterinarians (76.8%; 209/272) and animal scientists (23.2%; 63/272) responded to an online survey. Logistic regression, latent class and logit models were used to evaluate objective answers, and the Discourse of the Collective Subject method was used to interpret open-ended answers. Specialists who were women (62.5%; 170/272), veterinarians (76.8%; 209/272), vegetarians (7.0%; 19/272) and vegans (1.1%; 3/272) were more supportive of cell-based meat. Lack of knowledge and the connection with artificiality, the most frequent spontaneous word associated with cell-based meat by all respondents, were the main negative points highlighted. Thus, it seems fundamental to offer higher education to veterinarians and animal scientists regarding cell-based meat, since engaging them with this novel technology may mitigate both the resistance and its negative consequences for the professionals, society, the animals involved and the environment.
RESUMEN
Cultured meat is a novel food technology that promises to produce meat in a more environmentally friendly and animal-friendly way. We conducted an internet survey in ten countries (Australia, China, England, France, Germany, Mexico, South Africa, Spain, Sweden and the US) with a total sample of 6128 participants. Results suggest that there are large cultural differences regarding the acceptance of cultured meat. French consumers were significantly less accepting of the idea than consumers in all other countries. Perceived naturalness of and disgust evoked by cultured meat were important factors in the acceptance of this novel food technology in all countries. Trust in the food industry, food neophobia and food disgust sensitivity indirectly and directly influenced the acceptance of cultured meat in almost all countries. In order to increase the acceptance of cultured meat, the similarity of cultured meat to traditional meat needs to be emphasized rather than the rather technical production process, which may evoke associations of unnaturalness and disgust.
Asunto(s)
Trastorno de la Ingesta Alimentaria Evitativa/Restrictiva , Asco , Animales , Australia , China , Comportamiento del Consumidor , Inglaterra , Preferencias Alimentarias , Francia , Alemania , Carne , México , Sudáfrica , España , Suecia , ConfianzaRESUMEN
In vitro meat is a novel concept of food science and biotechnology. Methods to produce in vitro meat employ muscle cells cultivated on a scaffold in a serum-free medium using a bioreactor. The microstructure of the scaffold is a key factor, because muscle cells must be oriented to generate parallel alignments of fibers. This work aimed to develop a new scaffold (microstructured film) to grow muscle fibers. The microstructured edible films were made using micromolding technology. A micromold was tailor-made using a laser cutting machine to obtain parallel fibers with a diameter in the range of 70-90 µm. Edible films were made by means of solvent casting using non-mammalian biopolymers. Myoblasts were cultured on flat and microstructured films at three cell densities. Cells on the microstructured films grew with a muscle fiber morphology, but in the case of using the flat film, they only produced unorganized cell proliferation. Myogenic markers were assessed using quantitative polymerase chain reaction. After 14 days, the expression of desmin, myogenin, and myosin heavy chain were significantly higher in microstructured films compared to the flat films. The formation of fiber morphology and the high expression of myogenic markers indicated that a microstructured edible film can be used for the production of in vitro meat.