Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37895717

RESUMEN

In this study, the evolutions of Cube and {115}<161> orientations of a cold-rolled ultra-thin non-oriented silicon steel were investigated using a combination of experimental investigation and the crystal plasticity finite element method (CPFEM). The results show that Cube orientations remain relatively stable when their initial deviation angles from the ideal Cube orientation are less than 12°, even after a 60% cold rolling reduction. However, larger deviations occur due to higher strain near grain boundaries. Furthermore, the {115}<161> orientations, with an initial deviation of ~18° from the ideal Cube orientation, become separated into different orientation regions during cold rolling. Some regions gradually approach the ideal Cube orientation as cold rolling progresses and reach ~12.5° deviation from the ideal Cube at a 40% reduction. This study demonstrates good agreement between simulation and experimental results, highlights the micro-deformation mechanisms during rolling, and offers insights for optimizing the ultra-thin strip rolling process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA