Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 428: 136775, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423111

RESUMEN

To develop food packaging with good antibacterial activity and mechanical performance, four amino carboxymethyl chitosan (ACC)//dialdehyde starch (DAS) /polyvinyl alcohol (PVA) films were prepared by Schiff base and hydrogen bond interactions for efficient loading and release of ε-polylysine (ε-PL). The effects of the Schiff base reaction on the physicochemical properties of the films were explored based on the different aldehyde group contents in DAS. The ACC//DAS4/PVA film exhibited a tensile strength of 62.5 MPa, and the water vapor and oxygen permeability was 8.77 × 10-3·g·mm/m2·d·kPa and 0.15 × 103·cm3·mm/m2·d, respectively. By leveraging the Schiff base reaction, the film swelling properties were improved by adjusting the cross-link density, mesh size, and molecular mass between the cross-links. The ACC//DAS4/PVA film could efficiently load ε-PL with a value of 98.44% and long-term release in a food simulant of 10% ethanol at 25 °C for 120 min. Moreover, the ACC-ε-PL//DAS4/PVA film was successfully used for salmon preservation.


Asunto(s)
Quitosano , Quitosano/química , Polivinilos , Alcohol Polivinílico/química , Polilisina/química , Bases de Schiff , Antibacterianos/farmacología , Embalaje de Alimentos
2.
Polymers (Basel) ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679264

RESUMEN

Bio-based alternatives for petroleum-based thermosets are crucial for implementing sustainable practices in fiber-reinforced polymer composites. Therefore, the mechanical properties of diglycidyl ether of bisphenol a (DGEBA) cured with either l-arginine, l-citrulline, γ-aminobutyric acid, l-glutamine, l-tryptophan, or l-tyrosine were investigated to determine the potential of amino acids as bio-based curing agents for epoxy resins. Depending on the curing agent, the glass transition temperature, Young's modulus, tensile strength, and critical stress intensity factor range from 98.1 ∘C to 188.3 ∘C, 2.6 GPa to 3.5 GPa, 39.4 MPa to 46.4 MPa, and 0.48 MPam0.5 to 1.34 MPam0.5, respectively. This shows that amino acids as curing agents for epoxy resins result in thermosets with a wide range of thermo-mechanical properties and that the choice of curing agent has significant influence on the thermoset's properties. After collecting the results of dynamic mechanical analysis (DMA), tensile, flexural, compression, and compact tension tests, the functionality f, cross-link density νC, glass transition temperature Tg, Young's modulus ET, compression yield strength σCy, critical stress intensity factor in mode I KIC, fracture energy GIC, and diameter of the plastic zone dp are correlated with one another to analyze their inter-dependencies. Here, the cross-link density correlates strongly positively with Tg, ET, and σCy, and strongly negatively with KIC, GIC, and dp. This shows that the cross-link density of DGEBA cured with amino acids has a crucial influence on their thermo-mechanical properties and that the thermosets considered may either be stiff and strong or tough, but hardly both at the same time.

3.
Materials (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203924

RESUMEN

This study compares the effect of sulfur and dicumyl peroxide (DCP) vulcanizing systems on the physical and mechanical properties of rubber compounds based on acrylonitrile butadiene rubber (NBR). NBR compounds cured by different amounts of DCP and NBR vulcanizates filled with various concentrations of carbon black (CB) and a constant amount of sulfur or DCP were prepared. The vulcanizates were characterized by tensile testing, dynamic mechanical thermal analysis (DMTA), and cross-link density determination. The tensile strength and Young's modulus were found to increase with the rising amount of DCP and CB, while elongation at break decreased. The samples vulcanized by the sulfur system and filled with CB show a substantial increase in tensile strength from 13.1 to 21.2 MPa. Higher storage modulus and glass transition temperature were observed with the increase in the amount of peroxide and filler, and consequently, the increase in cross-link density, indicating rigidity increase and lower molecular mobility. The changes in the physical and mechanical properties of the NBR vulcanizates were in correlation with the changes in solvent uptake and cross-link density.

4.
ACS Nano ; 16(4): 6929-6936, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35377606

RESUMEN

We report that the load transfer in carbon nanotube (CNT) networks is determined by the cross-link density via three critical thresholds, namely, percolation, connection, and saturation, which divide the transfer into four different modes. Reminiscent of the connectivity problem in the graph theory, an individual path for the successive load transfer through the network is formed at the first threshold, then all CNTs are connected together by cross-links at the second one, and finally, the connections are gradually converted into tetrahedrons toward a rigidized connectivity until the third saturation threshold. The power-law distribution of the number of cross-links per CNT shows a preferential linking mechanism, i.e., that the CNTs with high cross-links are more attractive to form new cross-links than the CNTs with low cross-links, while repetitive cross-links could hardly improve the strength of CNT networks.

5.
Materials (Basel) ; 15(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35329456

RESUMEN

The purpose of this work was to cross-link chloroprene rubber (CR) with silver(I) oxide (Ag2O) and to investigate the properties of the obtained vulcanizates. Silver(I) oxide was chosen as an alternative to zinc oxide (ZnO), which is part of the standard CR cross-linking system. The obtained results show that it is possible to cross-link chloroprene rubber with silver(I) oxide. This is evidenced by the determined vulcametric parameters, equilibrium swelling and elasticity constants. As the Ag2O content in the composition increases, the cross-link density of the vulcanizates also increases. However, the use of 1 phr of Ag2O is insufficient to obtain a suitably extensive network. Exclusively, the incorporation of 2 phr of Ag2O results in obtaining vulcanizates with great cross-link density. The obtained compositions are characterized by good mechanical properties, as evidenced by high tensile strength. The performed thermal analyses-differential scanning calorimetry (DSC) and thermogravimetry (TGA) allowed us to determine the course of composition cross-linking, but also to determine changes in their properties during heating. The results of the thermal analysis confirmed that CR can be cross-linked with Ag2O, and the increasing amount of oxide in the composition increases the degree of cross-linking of vulcanizates. However, the amount of Ag2O in the composition does not affect the processes occurring in the heated vulcanizate.

6.
Dent Mater ; 37(12): 1854-1864, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34593244

RESUMEN

OBJECTIVE: To explore the effect of different curing modes of conventional and self-adhesive dual-cure resin cements on their rates of thermal decomposition, hardness development and network integrity. METHODS: Five self-adhesive (PANAVIA SA, RelyX Universal Resin, RelyX Unicem 2, Bifix SE and SpeedCEM Plus) and three conventional (PANAVIA V5, Nexus Third Generation and RelyX Ultimate Universal) dual-cure resin cements were investigated. Thermal decomposition stages, initial onset temperatures, the maximum rate of mass-loss and the filler mass-fraction of each resin cement were analysed by thermogravimetric analysis (TGA). Surface hardness was measured at 1h post-cure and after 24h of dry storage at 37°C. The relative network integrities were estimated from reductions in hardness after 168h of water storage. Data were analysed via one-way ANOVA, Tukey post-hoc tests and paired/independent sample t-tests (a=0.05). RESULTS: No difference was apparent between TGA data for self-cured and light-cured specimens. Numerical differentiation of mass-loss versus temperature showed either single or multiple peaks. For the set of 8 cements, the maximum rate of mass-loss (%/°C) correlated negatively with residual mass at 600°C. All dry-stored cements increased in hardness from 1 to 24h, ranging from 20.4% to 52.6% for light-cure mode and from 41.3% to 112.6% for self-cure. After 168h water storage, the hardness of cements decreased: by 18.5%-36.2% for light-cured and by 9.8%-17.9% for self-cured. Overall, surface hardness was greater for light-cured cements. The initial onset temperature (IOT) of thermal decomposition correlated negatively with the hardness decrease produced by water-storage: r2=0.77 for light-cure and r2=0.88 for self-cure. This provided the basis for a relative scale of composite network integrity, probably reflecting differences in cross-link density. SIGNIFICANCE: Light-curing, where possible, remains beneficial to the hardness and related properties of dual-cure resin cements. Combination of TG analysis and solvent softening experiments give an indication of relative network integrity - between materials - and their relative cross-link densities.


Asunto(s)
Cementos Dentales , Cementos de Resina , Dureza , Curación por Luz de Adhesivos Dentales , Ensayo de Materiales
7.
Materials (Basel) ; 14(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946797

RESUMEN

This study aimed to examine the optimal cross-link density of recombinant peptide (RCP) particles, based on human collagen type I, for bone reconstruction in human alveolar cleft. Low- (group 1), medium- (group 2), and high- (group 3) cross-linked RCP particles were prepared by altering the duration of the heat-dependent dehydration reaction. Rat palatine fissures (n = 45), analogous to human congenital bone defects, were examined to evaluate the potential of bone formation by the three different RCP particles. Microcomputed tomography images were obtained to measure bone volume and bone mineral density at 4, 8, 12, and 16 weeks post grafting. Specimens were obtained for histological analysis at 16 weeks after grafting. Additionally, alkaline phosphatase and tartrate acid phosphatase staining were performed to visualize the presence of osteoblasts and osteoclasts. At 16 weeks, bone volume, bone mineral density, and new bone area measurements in group 2 were significantly higher than in any other group. In addition, the number of osteoblasts and osteoclasts on the new bone surface in group 2 was significantly higher than in any other group. Our results demonstrated that medium cross-linking was more suitable for bone formation-and could be useful in human alveolar cleft repairs as well.

8.
ACS Biomater Sci Eng ; 6(1): 308-319, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33313390

RESUMEN

Hydrogel systems are an appealing class of therapeutic delivery vehicles, though it can be challenging to design hydrogels that maintain desired spatiotemporal presentation of therapeutic cargo. In this work, we propose a different approach in which computational tools are developed that creates a theoretical representation of the hydrogel polymer network to design hydrogels with predefined mesh properties critical for controlling therapeutic delivery. We postulated and confirmed that the computational model could incorporate properties of alginate polymers, including polymer content, monomer composition and polymer chain radius, to accurately predict cross-link density and mesh size for a wide range of alginate hydrogels. Additionally, the simulations provided a robust strategy to determine the mesh size distribution and identified properties to control the mesh size of alginate hydrogels. Furthermore, the model was validated for additional hydrogel systems and provided a high degree of correlation (R2 > 0.95) to the mesh sizes determined for both fibrin and polyethylene glycol (PEG) hydrogels. Finally, a full factorial and Box-Behnken design of experiments (DOE) approach utilized in combination with the computational model predicted that the mesh size of hydrogels could be varied from approximately 5 nm to 5 µm through controlling properties of the polymer network. Overall, this computational model of the hydrogel polymer network provides a rapid and accessible strategy to predict hydrogel mesh properties and ultimately design hydrogel systems with desired mesh properties for potential therapeutic applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Alginatos , Materiales Biocompatibles , Polímeros
9.
Clin Oral Investig ; 23(11): 3995-4010, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30737620

RESUMEN

OBJECTIVES: To investigate the relationship of the irradiance-beam-profile areas from six different light-curing units (LCUs) with the degree of conversion (DC), microhardness (KH), and cross-link density (CLD) throughout a resin-based composite (RBC) cured at two clinically relevant distances, and to explore the correlations among them. MATERIALS AND METHODS: A mapping approach was used to measure DC using micro-Raman spectroscopy, KH using a Knoop indentor on a hardness tester, and %KH reduction after ethanol exposure, as an indicator for CLD within a nano-hybrid RBC increment (n = 3) at various depths. These sample composites were cured from two distances while maintaining the radiant exposure, using six different light-curing units: one quartz-tungsten-halogen; two single and three multiple-emission-peak light-emitting-diode units. Irradiance beam profiles were generated for each LCU at both distances, and localized irradiance values were calculated. Points across each depth were analyzed using repeated measures ANOVA. Correlations across multiple specimen locations and associations between beam uniformity corresponding with polymerization measurements were calculated using linear mixed models and Pearson correlation coefficients. RESULTS: Significant non-uniform polymerization patterns occurred within the specimens at various locations and depths. At 2-mm curing distance, the localized DC = 52.7-76.8%, KH = 39.0-66.7 kg/mm2, and %KH reduction = 26.7-57.9%. At 8-mm curing distance, the localized DC = 50.4-78.6%, KH = 40.3-73.7 kg/mm2, and %KH reduction = 28.2-56.8%. The localized irradiance values were weakly correlated with the corresponding DC, KH, and %KH reduction, with only a few significant correlations (p < 0.05). CONCLUSIONS: Although significant differences were observed at each depth within the specimens, the localized irradiance values for all LCUs did not reflect the polymerization pattern and did not seem to have a major influence on polymerization patterns within the RBC, regardless of the curing distance. CLINICAL RELEVANCE: Commonly used LCUs do not produce uniform polymerization regardless of the curing distance, which may contribute to the risk of RBC fracture.


Asunto(s)
Resinas Compuestas , Luces de Curación Dental , Materiales Dentales , Dureza , Ensayo de Materiales , Polimerizacion , Propiedades de Superficie
10.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241399

RESUMEN

The obtaining and characterization of some environmental-friendly composites that are based on natural rubber and plasticized starch, as filler, are presented. These were obtained by peroxide cross-linking in the presence of a polyfunctional monomer used here as cross-linking co-agent, trimethylolpropane trimethacrylate. The influence of plasticized starch amount on the composites physical and mechanical characteristics, gel fraction and cross-link density, water uptake, structure and morphology before and after accelerated (thermal) degradation, and natural (for one year in temperate climate) ageing, was studied. Differences of two orders of magnitude between the degradation/aging methods were registered in the case of some mechanical characteristics, by increasing the plasticized starch amount. The cross-link density, water uptake and mass loss were also significant affected by the plasticized starch amount increasing and exposing for one year to natural ageing in temperate climate. Based on the results of Fourier Transform Infrared Spectroscopy (FTIR) and cross-link density measurements, reaction mechanisms attributed to degradation induced by accelerated and natural ageing were done. SEM micrographs have confirmed in addition that by incorporating a quantity of hydrophilic starch amount over 20 phr and by exposing the composites to natural ageing, and then degradability can be enhanced by comparing with thermal degradation.


Asunto(s)
Peróxidos/química , Goma/química , Solanum tuberosum , Almidón/química , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/ultraestructura
11.
Mol Pharm ; 15(6): 2348-2354, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29733653

RESUMEN

A series of block glycopolymers bearing galactose, dopamine, and cholic acid (CA) pendants have been synthesized by RAFT polymerization. These copolymers can self-assemble into micelles in water. The dopamine moieties, located near the interface of the core and shell of the micelles, can self-polymerize in a weakly basic solution, stabilizing the micelles in both water and organic solvent (DMSO). The cross-linked micelles are smaller in size than the uncross-linked precursors. Introducing more CA groups into the copolymers promotes the self-assembly to form larger aggregates, controls the cross-linking of the stabilized micelles, and facilitates the encapsulation of hydrophobic compounds such as Nile Red (NR). The amount of CA comonomers added also helps to control the cross-linking density, which affects the loading and release of NR. The core cross-linked micelles displayed a slow but sustained NR release and interact effectively with lectin (RCA120), demonstrating their potential use as a biocompatible multifunctional platform for targeted release of drugs.


Asunto(s)
Portadores de Fármacos/química , Composición de Medicamentos/métodos , Liberación de Fármacos , Ácido Cólico/química , Reactivos de Enlaces Cruzados/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Dopamina/química , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Galactosa/química , Micelas , Oxazinas/administración & dosificación , Oxazinas/farmacocinética , Polímeros/química
12.
J Biomed Mater Res B Appl Biomater ; 106(4): 1496-1504, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28727251

RESUMEN

The aims of this study were to profile light radiated from two light-curing units (LCUs) and evaluate profile relationship to polymerization patterns within a resin-matrix composite (RMC). Beam profiles of one multiple emission peak light-emitting-diode and one quartz-tungsten-halogen curing-unit were measured using a beam profiler/spectrometer system. A camera-based profiler and an integrating sphere/spectrometer assembly were used to evaluate each LCU beam. Polymerization patterns within a nano-hybrid RMC were investigated using a mapping approach by assessing the degree of conversion utilizing micro-Raman spectroscopy and indirectly estimating cross-link-density by repeated microhardness testing before and after exposure to ethanol (%KH reduction, n = 3). The irradiance received on the top and bottom specimen surfaces from both LCUs was measured using a MARC-RC system. The investigated beam profile area from both LCUs was non-uniform and yielded localized discrepancies in DC (55.7-74.9%) and %KH reduction (26.7-54.1%). The LCU irradiance received at the bottom of the specimens was ∼10% of the top value. This study demonstrated that LCU beam profiles were non-uniform in the area explored. Localized differences in DC and %KH reduction existed throughout the RMC specimens but did not follow a specific pattern. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1496-1504, 2018.


Asunto(s)
Resinas Compuestas/química , Luz , Ensayo de Materiales , Polimerizacion , Dureza , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
13.
ACS Appl Mater Interfaces ; 9(31): 26483-26491, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28715889

RESUMEN

Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (Mn) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m3). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[PCO2/PN2] ≈ 41 and α[PCO2/PCH4] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

14.
Biomed Mater Eng ; 27(5): 437-449, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27885992

RESUMEN

Four specimens of Nagor silicone of different hardness (soft, medium and hard) were swollen, until they reached equilibrium (i.e. constant mass) in five liquids at 25°C, before and after accelerated aging. For the specimens swollen before accelerated aging, the greatest swelling was obtained in methyl cyclohexane, while for the specimens swollen after accelerated aging, the greatest swelling was obtained in cyclohexane. The cross-link density, υ, was also calculated from the swelling measurements for all the specimens, before and after accelerated aging, using the Flory-Rehner equation. The softer silicones, which swelled the most, had lower υ values than harder silicones. The amount of swelling (measured in terms of ϕ) and υ varied significantly (p<0.05) in some cases, between the different silicone hardness and between different liquids. Furthermore, the cross-link density, υ, significantly (p<0.05) increased after accelerated aging in most liquids.Note: ϕ is defined as the volume fraction of polymer in its equilibrium swollen state. A probability value of statistical significance of 0.05 or 5% was selected, hence if a p value of less than 0.05 was obtained, the null hypothesis was rejected (i.e. significant if p<0.05).


Asunto(s)
Materiales Biocompatibles/química , Ciclohexanos/química , Siliconas/química , Reactivos de Enlaces Cruzados/química , Dureza , Humanos , Ensayo de Materiales
15.
Materials (Basel) ; 9(7)2016 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28773626

RESUMEN

The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

16.
Biomech Model Mechanobiol ; 15(1): 133-54, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26220454

RESUMEN

Both atomistic and experimental studies reveal the dependence of collagen fibril mechanics on biochemical and biophysical features such as, for instance, cross-link density, water content and protein sequence. In order to move toward a multiscale structural description of biological tissues, a novel analytical model for collagen fibril mechanics is herein presented. The model is based on a multiscale approach that incorporates and couples: thermal fluctuations in collagen molecules; the uncoiling of collagen triple helix; the stretching of molecular backbone; the straightening of the telopeptide in which covalent cross-links form; slip-pulse mechanisms due to the rupture of intermolecular weak bonds; molecular interstrand delamination due to the rupture of intramolecular weak bonds; the rupture of covalent bonds within molecular strands. The effectiveness of the proposed approach is verified by comparison with available atomistic results and experimental data, highlighting the importance of cross-link density in tuning collagen fibril mechanics. The typical three-region shape and hysteresis behavior of fibril constitutive response, as well as the transition from a yielding-like to a brittle-like behavior, are recovered with a special insight on the underlying nanoscale mechanisms. The model is based on parameters with a clear biophysical and biochemical meaning, resulting in a promising tool for analyzing the effect of pathological or pharmacological-induced histochemical alterations on the functional mechanical response of collagenous tissues.


Asunto(s)
Colágenos Fibrilares/metabolismo , Modelos Biológicos , Fenómenos Biomecánicos , Elasticidad
17.
Biomed Mater Eng ; 25(2): 137-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25813952

RESUMEN

Four samples of four medical grade silicones were swollen in six "good" liquids (i.e. those with a good swelling ability, in which silicones swell appreciably) at 25°C, until they reached constant mass (i.e. equilibrium). The volume fraction, ϕ, of the silicone in the swollen sample was calculated for each grade of silicone. Using a combination of the six ϕ values obtained in this study and four of those obtained in a previous study, for each silicone grade, ϕ was plotted against δl, the liquid solubility parameter for the ten liquids used. Using a curve fitting technique a second-order polynomial was plotted through the data points; the minimum in this polynomial provided a value for δp (the polymer solubility parameter). Furthermore, the results showed that the δp values obtained in this study (using ten liquids) were slightly but significantly greater (p<0.05) than those obtained in a previous study (using four liquids), for grade C6-165 only. Similarly, the χ and υ values obtained in the two studies were only significantly different (p<0.05) from each other, for grade C6-165.


Asunto(s)
Materiales Biocompatibles/química , Siliconas/química , Ciclohexanos/química , Heptanos/química , Octanos/química , Polímeros/química , Solubilidad , Solventes/química , Tolueno/química
18.
J Dent ; 43(2): 209-18, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25511301

RESUMEN

OBJECTIVES: To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). METHODS: Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). RESULTS: All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. CONCLUSIONS: Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. CLINICAL SIGNIFICANCE: The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment.


Asunto(s)
Resinas Compuestas/química , Materiales Dentales/química , Resinas Sintéticas/química , Temperatura , Dureza , Ensayo de Materiales , Termogravimetría
19.
J Sep Sci ; 37(1-2): 179-86, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166744

RESUMEN

Thermal analysis and SEM were employed to gain insights in the different stages of morphology development and the thermal properties of polymer-monolithic stationary phases. The studied system was a thermally initiated free-radical copolymerization reaction at 70°C of styrene and divinylbenzene in the presence of tetrahydrofuran and 1-decanol. The key events in the early stages of morphology development are initiation, chain growth, branching, and cyclization, leading to microgel particles. Interparticle reactions through pendant vinyl groups lead to the formation of microgel clusters. The rapid increase in molecular weight and cross-link density of the microgel clusters causes a reaction-induced phase separation, and the formation of a macroscopic network of interconnected globules was observed (macrogelation) at around 45 min. After 3 h or 65% conversion, a space-filling macroporous monolithic network was observed. Afterwards, mainly growth of existing globules takes place, reducing the macropore size. The porogen ratio affects the timing of the reaction-induced phase separation, strongly influencing the morphology of the polymer material. The use of a mixture of divinylbenzene isomers yielded a monolithic material that is less cross-linked at the surface compared to the central part of the polymer backbone due to copolymerization-composition drift. The less cross-linked outer layer starts devitrifying at 100°C.

20.
Adv Dent Res ; 25(1): 24-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24129814

RESUMEN

Direct placement restorative materials must interface with tooth structures that are often compromised by caries or trauma. The material must seal the interface while providing sufficient strength and wear resistance to assure function of the tooth for, ideally, the lifetime of the patient. Needed are direct restorative materials that are less technique-sensitive than current resin-based composite systems while having improved properties. The ideal material could be successfully used in areas of the world with limited infrastructure. Advances in our understanding of the interface between the restoration adhesive system and the stages of carious dentin can be used to promote remineralization. Application of fracture mechanics to adhesion at the tooth-restoration interface can provide insights for improvement. Research in polymer systems suggests alternatives to current composite resin matrix systems to overcome technique sensitivity, while advances in nano- and mesoparticle reinforcement and alignment in composite systems can increase material strength, toughness, and wear resistance, foreshadowing dental application.


Asunto(s)
Materiales Dentales , Restauración Dental Permanente , Humanos , Microscopía Electrónica de Rastreo , Nanocompuestos , Fracturas de los Dientes , Remineralización Dental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA