Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Soft Robot ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133138

RESUMEN

Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m-1) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.

2.
Methods Mol Biol ; 2828: 205-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147979

RESUMEN

The process of chemotaxis of living cells is complex. Cells follow gradients of an external signal because the interior of the cells gets polarized. The description of the exterior and the interior of the cell together with its motion for the convenient realization of the computational modeling of the whole process is a complex technical problem. Here, we employ a phase field model to characterize the interior of the cell, permitting the integration of stochastic partial differential equations, responsible for the polarization in the interior of the cell, and simultaneously, the calculation of the shape deformations of the cell, including its locomotion. We detail the mathematical description of the process and the procedure to calculate numerically the phase field with a simple reaction-diffusion equation for a single concentration.


Asunto(s)
Quimiotaxis , Modelos Biológicos , Quimiotaxis/fisiología , Simulación por Computador , Movimiento Celular/fisiología , Amoeba/fisiología
3.
Adv Sci (Weinh) ; : e2308382, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946679

RESUMEN

Small-scale robots offer significant potential in minimally invasive medical procedures. Due to the nature of soft biological tissues, however, robots are exposed to complex environments with various challenges in locomotion, which is essential to overcome for useful medical tasks. A single mini-robot often provides insufficient force on slippery biological surfaces to carry medical instruments, such as a fluid catheter or an electrical wire. Here, for the first time, a team of millirobots (TrainBot) is reported to generate around two times higher actuating force than a TrainBot unit by forming a convoy to collaboratively carry long and heavy cargos. The feet of each unit are optimized to increase the propulsive force around three times so that it can effectively crawl on slippery biological surfaces. A human-scale permanent magnetic set-up is developed to wirelessly actuate and control the TrainBot to transport heavy and lengthy loads through narrow biological lumens, such as the intestine and the bile duct. The first electrocauterization performed by the TrainBot is demonstrated to relieve a biliary obstruction and open a tunnel for fluid drainage and drug delivery. The developed technology sheds light on the collaborative strategy of small-scale robots for future minimally invasive surgical procedures.

4.
Neurosci Biobehav Rev ; : 105825, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067834

RESUMEN

Early motor skills may be important early markers of neurodevelopmental conditions or predictors of their later onset. To explore this, we conducted a systematic review and meta-analysis of infant motor skill assessments in those who go on to gain a clinical diagnosis of autism, attention deficit hyperactivity disorder (ADHD), schizophrenia, language conditions, tic disorders, or developmental coordination disorder (DCD). In total, 65 articles met inclusion criteria. Three three-level meta-analyses were run. Meta-analysis of milestone achievement in N=21354 individuals revealed gross motor milestones were significantly delayed compared to controls (g= 0.53, p< 0.001). Subgroup analyses revealed autism (g= 0.63) and DCD (g= 0.53) had the highest magnitude delays. Specific delays were revealed for holding the head up (g= 0.21), sitting (g= 0.28), standing (g= 0.35), crawling (g=0.19), and walking (g= 0.71). Meta-analyses of standardised motor skill measurements in N=1976 individuals revealed reduced performance compared to controls in autism and language conditions (g= -0.54, p< 0.001). Together, these findings demonstrate delayed milestone attainment and motor impairments in early childhood in neurodevelopmental conditions.

5.
ACS Appl Mater Interfaces ; 16(21): 27650-27656, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747462

RESUMEN

Soft actuators possessing notable mechanical deformations, high sensitivity, and fast response speed play a crucial role in various applications, such as artificial muscles, soft robots, and intelligent devices. In this study, a smart humidity-driven actuator was successfully fabricated by utilizing MXene/cellulose nanofiber (CNF)/LiCl (MCL) through vacuum-assisted filtration with fast response speed and high sensitivity. Utilizing the excellent humidity responsiveness of MXene/CNF and the robust hygroscopicity of LiCl, the synergistic effect of these materials enhances the hygroscopic properties and response speed of the actuator. The MCL actuator demonstrates excellent actuation performance, fast deformation, and reliable cyclic stability. To illustrate the extensive potential of the soft actuator, a range of applications, from bionic devices to soft grippers and crawling actuators, are showcased. Remarkably, the crawling actuator demonstrates sustained crawling motion without necessitating a humidity switch, relying on the humidity gradient from water droplets, and exhibits spontaneous directional motions within a certain range, which makes it a promising prospect in the field of soft robotics.

6.
Methods Mol Biol ; 2794: 305-311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630239

RESUMEN

Brain defects often lead to motor dysfunctions in humans. Drosophila melanogaster has been one of the most useful organisms in the study of neuronal biology due to its similarities with humans and has contributed to a more detailed understanding of the effects of genetic dysfunctions in the brain on behavior. We herein present modified protocols for the crawling assay with larvae and the climbing assay with adult flies that are simple to perform as well as a series of commands for ImageJ to automatically analyze data for the crawling assay.


Asunto(s)
Artrópodos , Drosophila , Adulto , Humanos , Animales , Larva , Drosophila melanogaster , Bioensayo
7.
Soft Robot ; 11(4): 709-723, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598719

RESUMEN

Soft pneumatic actuators (SPAs) play a crucial role in generating movements and forces in soft robotic systems. However, existing SPA designs require significant structural modifications to be used in applications other than their original design. The present article proposes an omni-purpose fully 3D-printable SPA design inspired by membrane type mold and cast SPAs. The design features a spring-like zig-zag structure 3D-printed using an affordable 3D printer with thermoplastic polyurethane and a minimum wall thickness between 0.4 and 0.6 mm. The new SPA can perform unidirectional extension (30% extension) and bidirectional (rotation around same axis) bending (100°), with the ability to exert 10 N blocking force for 350 kPa pressure input. In addition, the design exhibits the capability to be scaled down for the purpose of accommodating limited spaces, while simultaneously enabling the reconfigurable interconnection of multiple SPAs to adapt to larger areas and navigate intricate trajectories that were not originally intended. The SPA's ability to be used in multiple applications without structural modification was validated through testing as a robot end-effector (gripper), artificial muscles in a soft tendon-driven prosthetic hand, a tube/tunnel navigator, and a robot crawler.

8.
Med Phys ; 51(5): 3220-3244, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597908

RESUMEN

Physiological and pathological changes in tissues often cause changes in tissue mechanical properties, making tissue elastography an effective modality in medical imaging. Among the existing elastography methods, ultrasound elastography is of great interest due to the inherent advantages of ultrasound imaging technology, such as low cost, portability, safety, and wide availability. However, most current ultrasound elastography methods are based on the bulk shear wave; they can image deep tissues but cannot image superficial tissues. To address this challenge, ultrasonic elastography methods based on surface acoustic waves have been proposed. In this paper, we present a comprehensive review of ultrasound-based surface acoustic wave elastography techniques, including their theoretical foundations, technical implementations, and existing medical applications. The goal is to provide a concise summary of the state-of-the-art of this field, hoping to offer a reliable reference for the further development of these techniques and foster the expansion of their medical applications.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Ondas Ultrasónicas , Modelos Teóricos
9.
World J Gastrointest Oncol ; 16(4): 1660-1667, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660640

RESUMEN

BACKGROUND: Gastric cancer (GC) is a significant health problem worldwide, and early detection and accurate diagnosis are crucial for improving patient outcomes. Crawling-type gastric adenocarcinoma is a rare subtype of GC that has unique histopathological and clinical characteristics, and its diagnosis and management can be challenging. This pathological type of GC is also rare. CASE SUMMARY: Here, we report the case of a patient who underwent ordinary endoscopy, narrow-band imaging, and endoscopic ultrasonography intending to determine the extent of tumor invasion and upper abdominal enhanced computed tomography and whether there was tumor metastasis. Then, endoscopic submucosal dissection was performed. After pathological and immunohistochemical examination, the pathological diagnosis was crawling-type gastric adenocarcinoma. This is a very rare and special pathological type of tumor. This case highlights the importance of using advanced endoscopic techniques and pathological examination in diagnosing and managing gastric crawling-type adenocarcinoma. Moreover, the findings underscore the need for continued research and clinical experience in this rare subtype of GC to improve patient outcomes. CONCLUSION: The "crawling-type" GC is a rare and specific tumor pathology. It is difficult to identify and diagnose gliomas via endoscopy. The tumor is ill-defined, with a flat appearance and indistinct borders due to the lack of contrast against the background mucosa. Pathology revealed that the tumor cells were hand-like, so the patient has diagnosed with "crawling-type" gastric adenocarcinoma.

10.
Front Neurosci ; 18: 1349347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550566

RESUMEN

Aiming to provide a feasible crawling motion analysis method for clinical application, this study introduced electromyography (EMG)-based motion intention recognition technology into the pattern recognition of inter-limb coordination during human crawling for the first time. Eight inter-limb coordination modes (ILCMs) were defined. Ten adult participants were recruited, and each participant performed hands-knees crawling at low, medium, and fast speeds in self-selected ILCMs and the eight predefined ILCMs, respectively. EMG signals for pattern recognition were collected from 30 limbs and trunk muscles, and pressure signals for crawling cycle segmentation were collected from the left palm. The pattern recognition experiments were conducted in participant-specific, multi-participant, and participant-independent ways, respectively, adopting three different classifiers, including bidirectional long short-term memory (BiLSTM) network, support vector machine (SVM), and k-nearest neighbor (KNN). The experimental results show that EMG-based pattern recognition schemes could classify the eight ILCMs with high recognition rates, thereby confirming the feasibility of providing an EMG-based crawling motion analysis method for clinical doctors. Furthermore, based on the classification results of self-selected ILCMs at different speeds and the statistical results of stance duration, swing duration, and the duty factors of stance phase, the possible reasons why humans chose various ILCMs at different crawling speeds were discussed. The research results have potential application value for evaluating crawling function, understanding abnormal crawling control mechanisms, and designing rehabilitation robots.

11.
Soft Robot ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38387016

RESUMEN

Soft robotic grippers and hands offer adaptability, lightweight construction, and enhanced safety in human-robot interactions. In this study, we introduce vacuum-actuated soft robotic finger joints to overcome their limitations in stiffness, response, and load-carrying capability. Our design-optimized through parametric design and three-dimensional (3D) printing-achieves high stiffness using vacuum pressure and a buckling mechanism for large bending angles (>90°) and rapid response times (0.24 s). We develop a theoretical model and nonlinear finite-element simulations to validate the experimental results and provide valuable insights into the underlying mechanics and visualization of the deformation and stress field. We showcase versatile applications of the buckling joints: a three-finger gripper with a large lifting ratio (∼96), a five-finger robotic hand capable of replicating human gestures and adeptly grasping objects of various characteristics in static and dynamic scenarios, and a planar-crawling robot carrying loads 30 times its weight at 0.89 body length per second (BL/s). In addition, a jellyfish-inspired robot crawls in circular pipes at 0.47 BL/s. By enhancing soft robotic grippers' functionality and performance, our study expands their applications and paves the way for innovation through 3D-printed multifunctional buckling joints.

12.
Adv Sci (Weinh) ; 11(14): e2308033, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38303577

RESUMEN

Miniature locomotion robots with the ability to navigate confined environments show great promise for a wide range of tasks, including search and rescue operations. Soft miniature locomotion robots, as a burgeoning field, have attracted significant research interest due to their exceptional terrain adaptability and safety features. Here, a fully-soft centimeter-scale miniature crawling robot directly powered by fluid kinetic energy generated by an electrohydraulic actuator is introduced. Through optimization of the operating voltage and design parameters, the average crawling velocity of the robot is dramatically enhanced, reaching 16 mm s-1. The optimized robot weighs 6.3 g and measures 5 cm in length, 5 cm in width, and 6 mm in height. By combining two robots in parallel, the robot can achieve a turning rate of ≈3° s-1. Additionally, by reconfiguring the distribution of electrodes in the electrohydraulic actuator, the robot can achieve 2 degrees-of-freedom translational motion, improving its maneuverability in narrow spaces. Finally, the use of a soft water-proof skin is demonstrated for underwater locomotion and actuation. In comparison with other soft miniature crawling robots, this robot with full softness can achieve relatively high crawling velocity as well as increased robustness and recovery.

13.
Biomed Eng Online ; 23(1): 16, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326806

RESUMEN

BACKGROUND: Previous studies have reported that abnormal interlimb coordination is a typical characteristic of motor developmental delay (MDD) during human movement, which can be visually manifested as abnormal motor postures. Clinically, the scale assessments are usually used to evaluate interlimb coordination, but they rely heavily on the subjective judgements of therapists and lack quantitative analysis. In addition, although abnormal interlimb coordination of MDD have been studied, it is still unclear how this abnormality is manifested in physiology-related kinematic features. OBJECTIVES: This study aimed to evaluate how abnormal interlimb coordination of MDD during infant crawling was manifested in the stability of joints and limbs, activation levels of synergies and intrasubject consistency from the kinematic synergies of tangential velocities of joints perspective. METHODS: Tangential velocities of bilateral shoulder, elbow, wrist, hip, knee and ankle over time were computed from recorded three-dimensional joint trajectories in 40 infants with MDD [16 infants at risk of developmental delay, 11 infants at high risk of developmental delay, 13 infants with confirmed developmental delay (CDD group)] and 20 typically developing infants during hands-and-knees crawling. Kinematic synergies and corresponding activation coefficients were derived from those joint velocities using the non-negative matrix factorization algorithm. The variability accounted for yielded by those synergies and activation coefficients, and the synergy weightings in those synergies were used to measure the stability of joints and limbs. To quantify the activation levels of those synergies, the full width at half maximum and center of activity of activation coefficients were calculated. In addition, the intrasubject consistency was measured by the cosine similarity of those synergies and activation coefficients. RESULTS: Interlimb coordination patterns during infant crawling were the combinations of four types of single-limb movements, which represent the dominance of each of the four limbs. MDD mainly reduced the stability of joints and limbs, and induced the abnormal activation levels of those synergies. Meanwhile, MDD generally reduced the intrasubject consistency, especially in CDD group. CONCLUSIONS: These features have the potential for quantitatively evaluating abnormal interlimb coordination in assisting the clinical diagnosis and motor rehabilitation of MDD.


Asunto(s)
Articulación del Codo , Movimiento , Humanos , Lactante , Fenómenos Biomecánicos , Movimiento/fisiología , Rodilla , Mano
14.
Small ; 20(27): e2309661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38268235

RESUMEN

Soft robots based on flexible materials have attracted the attention due to high flexibility and great environmental adaptability. Among the common driving modes, electricity, light, and magnetism have the limitations of wiring, poor penetration capability, and sophisticated equipment, respectively. Here, an emerging wireless driving mode is proposed for the soft crawling robot based on wireless power transfer (WPT) technology. The receiving coil at the robot's tail, as an energy transfer station, receives energy from the transmitting coil and supplies the electrothermal responsiveness to drive the robot's crawling. By regulating the WPT's duration to control the friction between the robot and the ground, bidirectional crawling is realized. Furthermore, the receiving coil is also employed as a sensory organ to equip the robot with localization, ID recognition, and sensing capabilities based on electromagnetic coupling. This work provides an innovative and promising strategy for the design and integration of soft crawling robots, exhibiting great potential in the field of intelligent robots.

15.
Soft Robot ; 11(3): 464-472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265749

RESUMEN

As thermally driven smart materials capable of large reversible deformations, liquid crystal elastomers (LCEs) have great potential for applications in bionic soft robots, artificial muscles, controllable actuators, and flexible sensors due to their ability to program controllable motion into materials. In this article, we introduce conductive LCE actuators using a liquid metal electrothermal layer and a polyethylene terephthalate substrate. Our LCE actuators can be stimulated at low currents from 2 to 4 A and produce a maximum work density of 9.4 kJ∕m3. We illustrate the potential applications of this system by designing a palm-activated artificial muscle gripper, which can be used to grasp soft objects ranging from 5 to 55 mm in size, and even ring-shaped workpieces with precise external or internal support. Furthermore, inspired by the movement of fruit fly larvae, we designed a new soft robot capable of bioinspired crawling and turning by inducing anisotropic friction with an asymmetric design. Finally, we illustrate advanced motional control by designing an autonomously rotating wheel based on the asymmetric contraction of its spokes. To assist in the production of autonomously moving robots, we provide a thorough characterization of its motion dynamics.

16.
Soft Robot ; 11(2): 244-259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37870759

RESUMEN

The reconfigurable and modular method, and the adaptive morphology method are two main methodologies to achieve the multimodal robots. Basically, the former method mimics the biological multicellular systems, while the latter is mostly inspired by the multimodal animals. Herein inspired by the rhombic dodecahedron (RDD) origami model, a novel type of soft multicellular robots with multimodal locomotion is presented. Morphologically, the combinable and expandable three-dimensional (3D)-printed soft RDD cells are assembled into several typical patterns: in-line, cross shaped, oblong shaped, and parallelogra shaped. The kinematics based on the sequential monolithic deformations of soft RDDs is analyzed to generate multimodal locomotion: peristaltic crawling, two-anchor crawling, crawling with turning functions, and omnidirectional crawling through the propagating waves in two orthogonal directions. More encouragingly, without reorganizing the pattern or reshaping the morph, the in-line multicellular robots manifest excellent climbing abilities, where the built-in rhombic meshes alternately tighten and loosen the pole-like structures to provide the gripping forces reliably without sacrificing mobility. To wrap up, owing to the monolithic and hierarchical deformability, high reconfigurability, and 3D-printable manufacturability of the RDD, we anticipate that the soft multicellular robot can potentially manifest further contributions to the advanced robotics with embodied intelligence, such as task-oriented self-assembly robots, self-reconfigurable robotic systems, and goal-directed metamorphosis robots.

17.
Soft Robot ; 11(2): 260-269, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37792356

RESUMEN

Biomimetic soft robots are typically made of soft materials with bioinspired configurations. However, their locomotion is activated and manipulated by externally controlled soft actuators. In this study, piezo-wormbots were developed by automatically triggering the mechanical metamaterial-inspired soft actuator to mimic the continuous crawling of inchworms without manipulation, where crawling was controlled by the deformation of the piezo-wormbots themselves. We designed the flexible piezo-wormbots with an actuator to generate bending deformation under continuous inflation, piezoelectric rubber to automatically create internal excitation voltage to trigger deflation, as well as true legs and prolegs to convert the bending-recovering sequence into continuous crawling. We tailored the actuator to enhance the crawling performance and found that the response was critically affected by the leg pattern, inflation-to-deflation time duration ratio, air pressure, and ground environment. We observed satisfactory locomotion performance for the following tasks (pushing boxes and approaching a predefined target) through accurate self-actuated crawling under up to 51 continuous bending cycles. The maximum crawling velocity of the piezo-wormbots was found to be 16.6 mm/s, resulting in a maximum body length per second (BL/s) of 0.13, which is comparable to those of most natural inchworms (0.1-0.3 BL/s). This study offers new insight into bioinspired soft robotics and expands its biomimetic performance to continuously autonomous locomotion.

18.
Adv Sci (Weinh) ; 11(9): e2307738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38093662

RESUMEN

Insect-scale mobile robots can execute diverse arrays of tasks in confined spaces. Although most self-contained crawling robots integrate multiple actuators to ensure high flexibility, the intricate actuators restrict their miniaturization. Conversely, robots with a single actuator lack the requisite agility and precision for planar movements. Herein, a novel eccentric rotation-dependent multidirectional transmission is presented using a tilted eccentric motor and a simplistic two-legged structural configuration for planar locomotion. The speed of the eccentric motor is modulated to enable alternating microscopic jumps to propel the system, creating a mode of motion analogous to galumphing of seals. Upon modeling the motion dynamics and conducting experiments, the effectiveness of direct motion transmission is substantiated through microscopic galumphing encompassing left/right crawling and straight-forward crawling. Finally, a 1.2 g untethered robot is developed, which demonstrates enhanced straight crawling and spot turning, traverses narrow tunnels, and achieves precise movements. Therefore, the proposed motion-transmission technique provides a comprehensive set of innovative solutions of underactuated agile robots.

20.
Methods Mol Biol ; 2746: 101-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070083

RESUMEN

The fruit fly Drosophila melanogaster is a powerful genetic model that has been used for many decades to study nervous system function, development, and behavior. There are a large number of developmental and behavioral traits that can be measured to provide a broad readout of neurological function. These include patterned motor behaviors, such as larval locomotion, which can be used to assess whether genetic or environmental factors affect nervous system function to provide an entry point for deeper mechanistic studies. Here, we describe a protocol for quantifying larval locomotion using a simple camera setup and a freely available image analysis software. This protocol can be readily applied to human disease models or in toxicology studies, for example, to broadly assess the impact of treatments on neurological function.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Humanos , Drosophila melanogaster/genética , Larva/genética , Drosophila , Proteínas de Drosophila/genética , Locomoción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA