Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dent Res ; : 220345241256600, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910391

RESUMEN

Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which is the most common of the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study used the Pax9-/- mouse model with a consistent phenotype of cleft secondary palate to investigate the role of Pax9 in the process of palatal osteogenesis. Although prior research has identified the upregulation of Wnt pathway modulators Dkk1 and Dkk2 in Pax9-/- palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between Pax9+ and osteogenic populations. Loss of Pax9 results in spatially restricted osteogenic domains bounded by Dkk2, which normally interfaces with Pax9 in the mesenchyme. Moreover, the loss of Pax9 leads to a disruption in the normal osteodifferentiaion of palatal osteogenic mesenchymal cells. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.

2.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37292772

RESUMEN

Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which constitutes the most common among the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study utilized the Pax9-/- mouse model with a consistent phenotype of cleft secondary palate to investigate the role of Pax9 in the process of palatal osteogenesis. While prior research had identified upregulation of Wnt pathway modulators Dkk1 and Dkk2 in Pax9-/- palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between Pax9+ and osteogenic populations. Loss of Pax9 results in spatially restricted osteogenic domains bounded by Dkk2, which normally interfaces with Pax9 in the mesenchyme. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.

3.
J Dent Res ; 102(10): 1078-1079, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37465936
4.
J Dent Res ; 102(4): 459-466, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36751050

RESUMEN

Failure of palatogenesis results in cleft palate, one of the most common congenital disabilities in humans. During the final phases of palatogenesis, the protective function of the peridermal cell layer must be eliminated for the medial edge epithelia to adhere properly, which is a prerequisite for the successful fusion of the secondary palate. However, a deeper understanding of the role and fate of the periderm in palatal adherence and fusion has been hampered due to a lack of appropriate periderm-specific genetic tools to examine this cell type in vivo. Here we used the cytokeratin-6A (Krt-6a) locus to develop both constitutive (Krt6ai-Cre) and inducible (Krt6ai-CreERT2) periderm-specific Cre driver mouse lines. These novel lines allowed us to achieve both the spatial and temporal control needed to dissect the periderm fate on a cellular resolution during palatogenesis. Our studies suggest that, already before the opposing palatal shelves contact each other, at least some palatal periderm cells start to gradually lose their squamous periderm-like phenotype and dedifferentiate into cuboidal cells, reminiscent of the basal epithelial cells seen in the palatal midline seam. Moreover, we show that transforming growth factor-ß (TGF-ß) signaling plays a critical periderm-specific role in palatogenesis. Thirty-three percent of embryos lacking a gene encoding the TGF-ß type I receptor (Tgfbr1) in the periderm display a complete cleft of the secondary palate. Our subsequent experiments demonstrated that Tgfbr1-deficient periderm fails to undergo appropriate dedifferentiation. These studies define the periderm cell fate during palatogenesis and reveal a novel, critical role for TGF-ß signaling in periderm dedifferentiation, which is a prerequisite for appropriate palatal epithelial adhesion and fusion.


Asunto(s)
Fisura del Paladar , Hueso Paladar , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Fisura del Paladar/genética , Células Epiteliales/metabolismo , Hueso Paladar/crecimiento & desarrollo , Hueso Paladar/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887221

RESUMEN

The cranial base contains a special type of growth plate termed the synchondrosis, which functions as the growth center of the skull. The synchondrosis is composed of bidirectional opposite-facing layers of resting, proliferating, and hypertrophic chondrocytes, and lacks the secondary ossification center. In long bones, the resting zone of the epiphyseal growth plate houses a population of parathyroid hormone-related protein (PTHrP)-expressing chondrocytes that contribute to the formation of columnar chondrocytes. Whether PTHrP+ chondrocytes in the synchondrosis possess similar functions remains undefined. Using Pthrp-mCherry knock-in mice, we found that PTHrP+ chondrocytes predominantly occupied the lateral wedge-shaped area of the synchondrosis, unlike those in the femoral growth plate that reside in the resting zone within the epiphysis. In vivo cell-lineage analyses using a tamoxifen-inducible Pthrp-creER line revealed that PTHrP+ chondrocytes failed to establish columnar chondrocytes in the synchondrosis. Therefore, PTHrP+ chondrocytes in the synchondrosis do not possess column-forming capabilities, unlike those in the resting zone of the long bone growth plate. These findings support the importance of the secondary ossification center within the long bone epiphysis in establishing the stem cell niche for PTHrP+ chondrocytes, the absence of which may explain the lack of column-forming capabilities of PTHrP+ chondrocytes in the cranial base synchondrosis.


Asunto(s)
Condrocitos , Proteína Relacionada con la Hormona Paratiroidea , Animales , Diferenciación Celular , Condrocitos/metabolismo , Epífisis , Placa de Crecimiento/metabolismo , Ratones , Proteína Relacionada con la Hormona Paratiroidea/genética , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Base del Cráneo/metabolismo
6.
J Dent Res ; 101(8): 931-941, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35220829

RESUMEN

Calvaria development is distinct from limb formation. Craniosynostosis is a skull deformity characterized by premature cranial suture fusion due to the loss of the GNAS gene and, consequently, its encoded protein Gαs. This birth defect requires surgery, with potential lethal consequences. So far, hardly any early-stage nonsurgical interventions for GNAS loss-related craniosynostosis are available. Here, we investigated the role of the Gnas gene in mice in guarding the distinctiveness of intramembranous ossification and how loss of Gnas triggered endochondral-like ossification within the cranial sutures. Single-cell RNA sequencing (scRNA-seq) of normal neonatal mice cranial suture chondrocytes showed a Hedgehog (Hh) inactivation pattern, which was associated with Gαs signaling activation. Loss of Gnas evoked chondrocyte-to-osteoblast fate conversion and resulted in cartilage heterotopic ossification (HO) within cranial sutures and fontanels of the mouse model, leading to a skull deformity resembling craniosynostosis in patients with loss of GNAS. Activation of ectopic Hh signaling within cranial chondrocytes stimulated the conversion of cell identity through a hypertrophy-like stage, which shared features of endochondral ossification in vivo. Reduction of Gli transcription activity by crossing with a loss-of-function Gli2 allele or injecting GLI1/2 antagonist hindered the progression of cartilage HO in neonatal stage mice. Our study uncovered the role of Gαs in maintaining cranial chondrocyte identity during neonatal calvaria development in mice and how reduction of Hh signaling could be a nonsurgical intervention to reduce skull deformity in craniosynostosis due to loss of GNAS.


Asunto(s)
Cromograninas , Suturas Craneales , Craneosinostosis , Subunidades alfa de la Proteína de Unión al GTP Gs , Animales , Condrocitos/metabolismo , Cromograninas/genética , Craneosinostosis/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Osteogénesis/genética , Cráneo
7.
J Dent Res ; 101(6): 664-674, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35045740

RESUMEN

The increased prevalence of temporomandibular joint osteoarthritis (TMJOA) in children and adolescents has drawn considerable attention as it may interfere with mandibular condyle growth, resulting in dento-maxillofacial deformities. However, treatments for osteoarthritis have been ineffective at restoring the damaged bone and cartilage structures due to poor understanding of the underlying degenerative mechanism. In this study, we demonstrate that Gli1+ cells residing in the subchondral bone contribute to bone formation and homeostasis in the mandibular condyle, identifying them as osteogenic progenitors in vivo. Furthermore, we show that, in a TMJOA mouse model, derivatives of Gli1+ cells undergo excessive expansion along with increased but uneven distribution of osteogenic differentiation in the subchondral bone, which leads to abnormal subchondral bone remodeling via Hedgehog (Hh) signaling activation and to the development of TMJOA. The selective pharmacological inhibition and specific genetic inhibition of Hh signaling in Gli1+ osteogenic progenitors result in improved subchondral bone microstructure, attenuated local immune inflammatory response in the subchondral bone, and reduced degeneration of the articular cartilage, providing in vivo functional evidence that targeting Hh signaling in Gli1+ osteogenic progenitors can modulate bone homeostasis in osteoarthritis and provide a potential approach for treating TMJOA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Proteínas Hedgehog , Cóndilo Mandibular , Ratones , Osteogénesis , Articulación Temporomandibular , Proteína con Dedos de Zinc GLI1
8.
J Dent Res ; 101(4): 465-472, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34689653

RESUMEN

Risk loci identified through genome-wide association studies have explained about 25% of the phenotypic variations in nonsyndromic orofacial clefts (nsOFCs) on the liability scale. Despite the notable sex differences in the incidences of the different cleft types, investigation of loci for sex-specific effects has been understudied. To explore the sex-specific effects in genetic etiology of nsOFCs, we conducted a genome-wide gene × sex (GxSex) interaction study in a sub-Saharan African orofacial cleft cohort. The sample included 1,019 nonsyndromic orofacial cleft cases (814 cleft lip with or without cleft palate and 205 cleft palate only) and 2,159 controls recruited from 3 sites (Ethiopia, Ghana, and Nigeria). An additive logistic model was used to examine the joint effects of the genotype and GxSex interaction. Furthermore, we examined loci with suggestive significance (P < 1E-5) in the additive model for the effect of the GxSex interaction only. We identified a novel risk locus on chromosome 8p22 with genome-wide significant joint and GxSex interaction effects (rs2720555, p2df = 1.16E-08, pGxSex = 1.49E-09, odds ratio [OR] = 0.44, 95% CI = 0.34 to 0.57). For males, the risk of cleft lip with or without cleft palate at this locus decreases with additional copies of the minor allele (p < 0.0001, OR = 0.60, 95% CI = 0.48 to 0.74), but the effect is reversed for females (p = 0.0004, OR = 1.36, 95% CI = 1.15 to 1.60). We replicated the female-specific effect of this locus in an independent cohort (p = 0.037, OR = 1.30, 95% CI = 1.02 to 1.65), but no significant effect was found for the males (p = 0.29, OR = 0.86, 95% CI = 0.65 to 1.14). This locus is in topologically associating domain with craniofacially expressed and enriched genes during embryonic development. Rare coding mutations of some of these genes were identified in nsOFC cohorts through whole exome sequencing analysis. Our study is additional proof that genome-wide GxSex interaction analysis provides an opportunity for novel findings of loci and genes that contribute to the risk of nsOFCs.


Asunto(s)
Labio Leporino , Fisura del Paladar , Labio Leporino/genética , Fisura del Paladar/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
9.
Hum Mutat ; 42(8): 1066-1078, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34004033

RESUMEN

Genome-wide association studies (GWAS) have generated unprecedented insights into the genetic etiology of orofacial clefting (OFC). The moderate effect sizes of associated noncoding risk variants and limited access to disease-relevant tissue represent considerable challenges for biological interpretation of genetic findings. As rare variants with stronger effect sizes are likely to also contribute to OFC, an alternative approach to delineate pathogenic mechanisms is to identify private mutations and/or an increased burden of rare variants in associated regions. This report describes a framework for targeted resequencing at selected noncoding risk loci contributing to nonsyndromic cleft lip with/without cleft palate (nsCL/P), the most frequent OFC subtype. Based on GWAS data, we selected three risk loci and identified candidate regulatory regions (CRRs) through the integration of credible SNP information, epigenetic data from relevant cells/tissues, and conservation scores. The CRRs (total 57 kb) were resequenced in a multiethnic study population (1061 patients; 1591 controls), using single-molecule molecular inversion probe technology. Combining evidence from in silico variant annotation, pedigree- and burden analyses, we identified 16 likely deleterious rare variants that represent new candidates for functional studies in nsCL/P. Our framework is scalable and represents a promising approach to the investigation of additional congenital malformations with multifactorial etiology.


Asunto(s)
Labio Leporino , Fisura del Paladar , Labio Leporino/genética , Fisura del Paladar/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
10.
J Dent Res ; 100(12): 1359-1366, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33899571

RESUMEN

Bone loss caused by trauma, neoplasia, congenital defects, or periodontal disease is a major cause of disability and human suffering. Skeletal progenitor cell-extracellular matrix interactions are critical for bone regeneration. Discoidin domain receptor 2 (DDR2), an understudied collagen receptor, plays an important role in skeletal development. Ddr2 loss-of-function mutations in humans and mice cause severe craniofacial and skeletal defects, including altered cranial shape, dwarfing, reduced trabecular and cortical bone, alveolar bone/periodontal defects, and altered dentition. However, the role of this collagen receptor in craniofacial regeneration has not been examined. To address this, calvarial subcritical-size defects were generated in wild-type (WT) and Ddr2-deficient mice. The complete bridging seen in WT controls at 4 wk postsurgery was not observed in Ddr2-deficient mice even after 12 wk. Quantitation of defect bone area by micro-computed tomography also revealed a 50% reduction in new bone volume in Ddr2-deficient mice. Ddr2 expression during calvarial bone regeneration was measured using Ddr2-LacZ knock-in mice. Expression was restricted to periosteal surfaces of uninjured calvarial bone and, after injury, was detected in select regions of the defect site by 3 d postsurgery and expanded during the healing process. The impaired bone healing associated with Ddr2 deficiency may be related to reduced osteoprogenitor or osteoblast cell proliferation and differentiation since knockdown/knockout of Ddr2 in a mesenchymal cell line and primary calvarial osteoblast cultures reduced osteoblast differentiation while Ddr2 overexpression was stimulatory. In conclusion, Ddr2 is required for cranial bone regeneration and may be a novel target for therapy.


Asunto(s)
Regeneración Ósea , Receptor con Dominio Discoidina 2 , Cráneo , Animales , Ratones , Osteoblastos , Microtomografía por Rayos X
11.
Genes (Basel) ; 10(11)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652793

RESUMEN

Orofacial clefts (OFCs) are the most frequent craniofacial birth defects. An orofacial cleft (OFC) occurs as a result of deviations in palatogenesis. Cell proliferation, differentiation, adhesion, migration and apoptosis are crucial in palatogenesis. We hypothesized that deregulation of these processes in oral keratinocytes contributes to OFC. We performed microarray expression analysis on palatal keratinocytes from OFC and non-OFC individuals. Principal component analysis showed a clear difference in gene expression with 24% and 17% for the first and second component, respectively. In OFC cells, 228 genes were differentially expressed (p < 0.001). Gene ontology analysis showed enrichment of genes involved in ß1 integrin-mediated adhesion and migration, as well as in P-cadherin expression. A scratch assay demonstrated reduced migration of OFC keratinocytes (343.6 ± 29.62 µm) vs. non-OFC keratinocytes (503.4 ± 41.81 µm, p < 0.05). Our results indicate that adhesion and migration are deregulated in OFC keratinocytes, which might contribute to OFC pathogenesis.


Asunto(s)
Adhesión Celular , Labio Leporino/genética , Fisura del Paladar/genética , Queratinocitos/metabolismo , Transcriptoma , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular , Células Cultivadas , Labio Leporino/patología , Fisura del Paladar/patología , Femenino , Humanos , Lactante , Queratinocitos/fisiología , Masculino
12.
J Dent Res ; 98(9): 959-967, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31150594

RESUMEN

Orofacial clefting is the most common congenital craniofacial malformation, appearing in approximately 1 in 700 live births. Orofacial clefting includes several distinct anatomic malformations affecting the upper lip and hard and soft palate. The etiology of orofacial clefting is multifactorial, including genetic or environmental factors or their combination. A large body of work has focused on the molecular etiology of cleft lip and clefts of the hard palate, but study of the underlying etiology of soft palate clefts is an emerging field. Recent advances in the understanding of soft palate development suggest that it may be regulated by distinct pathways from those implicated in hard palate development. Soft palate clefting leads to muscle misorientation and oropharyngeal deficiency and adversely affects speech, swallowing, breathing, and hearing. Hence, there is an important need to investigate the regulatory mechanisms of soft palate development. Significantly, the anatomy, function, and development of soft palatal muscles are similar in humans and mice, rendering the mouse an excellent model for investigating molecular and cellular mechanisms of soft palate clefts. Cranial neural crest-derived cells provide important regulatory cues to guide myogenic progenitors to differentiate into muscles in the soft palate. Signals from the palatal epithelium also play key roles via tissue-tissue interactions mediated by Tgf-ß, Wnt, Fgf, and Hh signaling molecules. Additionally, mutations in transcription factors, such as Dlx5, Tbx1, and Tbx22, have been associated with soft palate clefting in humans and mice, suggesting that they play important regulatory roles during soft palate development. Finally, we highlight the importance of distinguishing specific types of soft palate defects in patients and developing relevant animal models for each of these types to improve our understanding of the regulatory mechanism of soft palate development. This knowledge will provide a foundation for improving treatment for patients in the future.


Asunto(s)
Fisura del Paladar/genética , Paladar Blando/crecimiento & desarrollo , Paladar Blando/patología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Transducción de Señal , Factores de Transcripción/genética
13.
J Dent Res ; 98(6): 659-665, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30917284

RESUMEN

This study investigated the genetic basis of an unusual autosomal dominant phenotype characterized by familial absent uvula, with a short posterior border of the soft palate, abnormal tonsillar pillars, and velopharyngeal insufficiency. Cytogenetic analysis and single-nucleotide polymorphism-based linkage analysis were investigated in a 4-generation family with 8 affected individuals. Whole exome sequencing data were overlaid, and segregation analysis identified a single missense variant, p.Q433P in the FOXF2 transcription factor, that fully segregated with the phenotype. This was found to be in linkage disequilibrium with a small 6p25.3 tandem duplication affecting FOXC1 and GMDS. Notably, the copy number imbalances of this region are commonly associated with pathologies that are not present in this family. Bioinformatic predictions with luciferase reporter studies of the FOXF2 missense variant indicated a negative impact, affecting both protein stability and transcriptional activation. Foxf 2 is expressed in the posterior mouse palate, and knockout animals develop an overt cleft palate. Since mice naturally lack the structural equivalent of the uvula, we demonstrated FOXF2 expression in the developing human uvula. Decipher also records 2 individuals with hypoplastic or bifid uvulae with copy number variants affecting FOXF2. Nevertheless, given cosegregation with the 6p25.3 duplications, we cannot rule out a combined effect of these gains and the missense variant on FOXF2 function, which may account for the rare palate phenotype observed.


Asunto(s)
Factores de Transcripción Forkhead/genética , Paladar Blando/patología , Úvula/patología , Preescolar , Análisis Mutacional de ADN , Egipto , Femenino , Humanos , Desequilibrio de Ligamiento , Masculino , Tonsila Palatina/patología , Linaje , Polimorfismo de Nucleótido Simple
14.
Angle Orthod ; 89(4): 643-650, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30840497

RESUMEN

OBJECTIVES: To assess correlation of dermatoglyphic (DG) pattern with quantitative palatal anatomic parameters measured using three-dimensional (3D) scanning of dental casts and to explore the possibility of utilizing these to predict future occurrence of malocclusion. MATERIALS AND METHODS: Pretreatment casts of 477 Saudi Arabian patients were divided into Class I, II, and III malocclusion groups. Fingerprints were recorded for all hand digits using a digital biometric device. Maxillary arch analysis was accomplished including intercanine, intermolar distance, palatal height, and palatal area. The results were statistically analyzed. RESULTS: The mean surface area of the palate was highest in Class II malocclusion. The DG pattern was not significantly associated with the type of malocclusion, except in the instance of the double loop characteristic (P = .05). There was a strong correlation, however, between DG characteristics like simple arch, loop, and double loop and palatal dimensions (intercanine, intermolar distance, and palatal height). Heterogeneity of DG pattern could be reliably used to predict palatal dimensions. Logistic regression revealed that only tented arch, symmetrical, spiral DG patterns and palatal area were significant but weak predictors of Angle malocclusion (P < .05). CONCLUSIONS: A novel correlation of DG pattern with 3D palatal anatomic characteristics was assessed in different Angle malocclusion classes. Few of the DG characteristics and palatal dimensions showed significant correlations. However, only some of these were significant predictors of Angle malocclusion.


Asunto(s)
Arco Dental , Maloclusión Clase II de Angle , Maloclusión , Cefalometría , Arco Dental/anatomía & histología , Dermatoglifia , Humanos , Maloclusión/terapia , Maxilar , Hueso Paladar , Arabia Saudita
15.
Clin Oral Investig ; 23(7): 2995-3003, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30392078

RESUMEN

OBJECTIVES: To determine whether the intramaxillary relationship of patients with Muenke syndrome and Saethre-Chotzen syndrome or TCF12-related craniosynostosis are systematically different than those of a control group. MATERIAL AND METHODS: Forty-eight patients (34 patients with Muenke syndrome, 8 patients with Saethre-Chotzen syndrome, and 6 patients with TCF12-related craniosynostosis) born between 1982 and 2010 (age range 4.84 to 16.83 years) that were treated at the Department of Oral Maxillofacial Surgery, Special Dental Care and Orthodontics, Children's Hospital Erasmus University Medical Center, Sophia, Rotterdam, the Netherlands, were included. Forty-seven syndromic patients had undergone one craniofacial surgery according to the craniofacial team protocol. The dental arch measurements intercanine width (ICW), intermolar width (IMW), arch depth (AD), and arch length (AL) were calculated. The control group existed of 329 nonsyndromic children. RESULTS: All dental arch dimensions in Muenke (ICW, IMW, AL, p < 0.001, ADmax, p = 0.008; ADman, p = 0.002), Saethre-Chotzen syndrome, or TCF12-related craniosynostosis patients (ICWmax, p = 0.005; ICWman, IMWmax, AL, p < 0.001) were statistically significantly smaller than those of the control group. CONCLUSIONS: In this study, we showed that the dental arches of the maxilla and the mandible of patients with Muenke syndrome and Saethre-Chotzen syndrome or TCF12-related craniosynostosis are smaller compared to those of a control group. CLINICAL RELEVANCE: To gain better understanding of the sutural involvement in the midface and support treatment capabilities of medical and dental specialists in these patients, we suggest the concentration of patients with Muenke and Saethre-Chotzen syndromes or TCF12-related craniosynostosis in specialized teams for a multi-disciplinary approach and treatment.


Asunto(s)
Acrocefalosindactilia , Craneosinostosis , Arco Dental , Acrocefalosindactilia/complicaciones , Adolescente , Niño , Preescolar , Craneosinostosis/complicaciones , Arco Dental/anomalías , Femenino , Humanos , Masculino , Países Bajos , Síndrome
16.
J Dent Res ; 97(13): 1501-1509, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29986156

RESUMEN

Mandibular prognathism (MP) is regarded as a craniofacial deformity resulting from the combined effects of environmental and genetic factors, while the genetically predetermined component is considered to play an important role to develop MP. Although linkage and association studies for MP have identified multiple strongly associated regions and genes, the causal genes and variants responsible for the deformity remain largely undetermined. To address this, we performed targeted sequencing of 396 genes selected from previous studies as well as genes and pathways related with craniofacial development as primary candidates in 199 MP cases and 197 controls and carried out a series of statistical and functional analyses. A nonsynonymous common variant of MYO1H rs3825393, C>T, p.Pro1001Leu, was identified to be significantly associated with MP. During zebrafish embryologic development, expression of MYO1H orthologous genes were detected at mandibular jaw. Furthermore, jaw cartilage defects were observed in zebrafish knockdown models. Collectively, these data demonstrate that MYO1H is required for proper jaw growth and contributes to MP pathogenesis, expanding our knowledge of the genetic basis of MP.


Asunto(s)
Miosina Tipo I/genética , Polimorfismo de Nucleótido Simple , Prognatismo/genética , Pez Cebra/embriología , Animales , Cartílago/metabolismo , Estudios de Casos y Controles , Cefalometría , Desarrollo Embrionario , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación in Situ , Masculino , Prognatismo/diagnóstico por imagen , Prognatismo/metabolismo , Cola (estructura animal)/embriología , Adulto Joven
17.
J Dent Res ; 97(13): 1510-1518, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29986157

RESUMEN

Cleft palate is among the most common birth defects. Currently, only 30% of cases have identified genetic causes, whereas the etiology of the majority remains to be discovered. We identified a new regulator of palate development, protein arginine methyltransferase 1 (PRMT1), and demonstrated that disruption of PRMT1 function in neural crest cells caused complete cleft palate and craniofacial malformations. PRMT1 is the most highly expressed of the protein arginine methyltransferases, enzymes responsible for methylation of arginine motifs on histone and nonhistone proteins. PRMT1 regulates signal transduction and transcriptional activity that affect multiple signal pathways crucial in craniofacial development, such as the BMP, TGFß, and WNT pathways. We demonstrated that Wnt1-Cre;Prmt1 fl/fl mice displayed a decrease in palatal mesenchymal cell proliferation and failure of palatal shelves to reach the midline. Further analysis in signal pathways revealed that loss of Prmt1 in mutant mice decreased BMP signaling activation and reduced the deposition of H4R3me2a mark. Collectively, our study demonstrates that Prmt1 is crucial in palate development. Our study may facilitate the development of a better strategy to interrupt the formation of cleft palate through manipulation of PRMT1 activity.


Asunto(s)
Fisura del Paladar/enzimología , Cresta Neural/enzimología , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Eliminación de Gen , Células Madre Mesenquimatosas/enzimología , Ratones , Ratones Transgénicos , Fenotipo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína Wnt1/metabolismo
18.
19.
J Dent Res ; 97(3): 321-328, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29073363

RESUMEN

Temporomandibular joint (TMJ) disorders are often associated with development of osteoarthritis-like changes in the mandibular condyle. Discoidin domain receptor 2 (DDR2), a collagen receptor preferentially activated by type I and III collagen found in the TMJ and other fibrocartilages, has been associated with TMJ degeneration, but its role in normal joint development has not been previously examined. Using Ddr2 LacZ-tagged mice and immunohistochemistry, we found that DDR2 is preferentially expressed and activated in the articular zone of TMJs but not knee joints. To assess the requirement for Ddr2 in TMJ development, studies were undertaken to compare wild-type and smallie ( slie) mice, which contain a spontaneous deletion in Ddr2 to produce an effective null allele. Analysis of TMJs from newborn Ddr2slie/slie mice revealed a developmental delay in condyle mineralization, as measured by micro-computed tomography and histologic analysis. In marked contrast, knee joints of Ddr2slie/slie mice were normal. Analysis of older Ddr2slie/slie mice (3 and 10 mo) revealed that the early developmental delay led to a dramatic and progressive loss of TMJ articular integrity and osteoarthritis-like changes. Mutant condyles had a rough and flattened bone surface, accompanied by a dramatic loss of bone mineral density. Mankin scores showed significantly greater degenerative changes in the TMJs of 3- and 10-mo-old Ddr2slie/slie mice as compared with wild-type controls. No DDR2-dependent degenerative changes were seen in knees. Analysis of primary cultures of TMJ articular chondrocytes from wild-type and Ddr2slie/slie mice showed defects in chondrocyte maturation and mineralization in the absence of Ddr2. These studies demonstrate that DDR2 is necessary for normal TMJ condyle development and homeostasis and that these DDR2 functions are restricted to TMJ fibrocartilage and not seen in the hyaline cartilage of the knee.


Asunto(s)
Envejecimiento/fisiología , Receptor con Dominio Discoidina 2/fisiología , Articulación de la Rodilla/crecimiento & desarrollo , Articulación Temporomandibular/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Cartílago Articular/crecimiento & desarrollo , Diferenciación Celular , Condrocitos/fisiología , Inmunohistoquímica , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Coloración y Etiquetado , Articulación Temporomandibular/diagnóstico por imagen , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA