Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Math Biosci Eng ; 21(2): 2787-2812, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38454707

RESUMEN

In response to the problem of coverage redundancy and coverage holes caused by the random deployment of nodes in wireless sensor networks (WSN), a WSN coverage optimization method called GARWOA is proposed, which combines the genetic algorithm (GA) and reinforced whale optimization algorithm (RWOA) to balance global search and local development performance. First, the population is initialized using sine map and piecewise linear chaotic map (SPM) to distribute it more evenly in the search space. Secondly, a non-linear improvement is made to the linear control factor 'a' in the whale optimization algorithm (WOA) to enhance the efficiency of algorithm exploration and development. Finally, a Levy flight mechanism is introduced to improve the algorithm's tendency to fall into local optima and premature convergence phenomena. Simulation experiments indicate that among the 10 standard test functions, GARWOA outperforms other algorithms with better optimization ability. In three coverage experiments, the coverage ratio of GARWOA is 95.73, 98.15, and 99.34%, which is 3.27, 2.32 and 0.87% higher than mutant grey wolf optimizer (MuGWO), respectively.

2.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448079

RESUMEN

This paper aims to provide a metaheuristic approach to drone array optimization applied to coverage area maximization of wireless communication systems, with unmanned aerial vehicle (UAV) base stations, in the context of suburban, lightly to densely wooded environments present in cities of the Amazon region. For this purpose, a low-power wireless area network (LPWAN) was analyzed and applied. LPWAN are systems designed to work with low data rates but keep, or even enhance, the extensive area coverage provided by high-powered networks. The type of LPWAN chosen is LoRa, which operates at an unlicensed spectrum of 915 MHz and requires users to connect to gateways in order to relay information to a central server; in this case, each drone in the array has a LoRa module installed to serve as a non-fixated gateway. In order to classify and optimize the best positioning for the UAVs in the array, three concomitant bioinspired computing (BIC) methods were chosen: cuckoo search (CS), flower pollination algorithm (FPA), and genetic algorithm (GA). Positioning optimization results are then simulated and presented via MATLAB for a high-range IoT-LoRa network. An empirically adjusted propagation model with measurements carried out on a university campus was developed to obtain a propagation model in forested environments for LoRa spreading factors (SF) of 8, 9, 10, and 11. Finally, a comparison was drawn between drone positioning simulation results for a theoretical propagation model for UAVs and the model found by the measurements.


Asunto(s)
Algoritmos , Dispositivos Aéreos No Tripulados , Humanos , Ciudades , Simulación por Computador , Flores
3.
Sensors (Basel) ; 23(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37112465

RESUMEN

To address the problems of low monitoring area coverage rate and the long moving distance of nodes in the process of coverage optimization in wireless sensor networks (WSNs), a multi-strategy improved sparrow search algorithm for coverage optimization in a WSN (IM-DTSSA) is proposed. Firstly, Delaunay triangulation is used to locate the uncovered areas in the network and optimize the initial population of the IM-DTSSA algorithm, which can improve the convergence speed and search accuracy of the algorithm. Secondly, the quality and quantity of the explorer population in the sparrow search algorithm are optimized by the non-dominated sorting algorithm, which can improve the global search capability of the algorithm. Finally, a two-sample learning strategy is used to improve the follower position update formula and to improve the ability of the algorithm to jump out of the local optimum. Simulation results show that the coverage rate of the IM-DTSSA algorithm is increased by 6.74%, 5.04% and 3.42% compared to the three other algorithms. The average moving distance of nodes is reduced by 7.93 m, 3.97 m, and 3.09 m, respectively. The results mean that the IM-DTSSA algorithm can effectively balance the coverage rate of the target area and the moving distance of nodes.

4.
Math Biosci Eng ; 20(2): 3191-3215, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36899577

RESUMEN

Soil element monitoring wireless sensor networks (SEMWSNs) are widely used in soil element monitoring agricultural activities. SEMWSNs monitor changes in soil elemental content during agriculture products growing through nodes. Based on the feedback from the nodes, farmers adjust irrigation and fertilization strategies on time, thus promoting the economic growth of crops. The critical issue in SEMWSNs coverage studies is to achieve maximum coverage of the entire monitoring field by adopting a smaller number of sensor nodes. In this study, a unique adaptive chaotic Gaussian variant snake optimization algorithm (ACGSOA) is proposed for solving the above problem, which also has the advantages of solid robustness, low algorithmic complexity, and fast convergence. A new chaotic operator is proposed in this paper to optimize the position parameters of individuals, enhancing the convergence speed of the algorithm. Moreover, an adaptive Gaussian variant operator is also designed in this paper to effectively avoid SEMWSNs from falling into local optima during the deployment process. Simulation experiments are designed to compare ACGSOA with other widely used metaheuristics, namely snake optimizer (SO), whale optimization algorithm (WOA), artificial bee colony algorithm (ABC), and fruit fly optimization algorithm (FOA). The simulation results show that the performance of ACGSOA has been dramatically improved. On the one hand, ACGSOA outperforms other methods in terms of convergence speed, and on the other hand, the coverage rate is improved by 7.20%, 7.32%, 7.96%, and 11.03% compared with SO, WOA, ABC, and FOA, respectively.

5.
Biomimetics (Basel) ; 8(1)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36810401

RESUMEN

One of the most important challenges for heterogeneous wireless sensor networks (HWSNs) is adequate network coverage and connectivity. Aiming at this problem, this paper proposes an improved wild horse optimizer algorithm (IWHO). Firstly, the population's variety is increased by using the SPM chaotic mapping at initialization; secondly, the WHO and Golden Sine Algorithm (Golden-SA) are hybridized to improve the WHO's accuracy and arrive at faster convergence; Thirdly, the IWHO can escape from a local optimum and broaden the search space by using opposition-based learning and the Cauchy variation strategy. The results indicate that the IWHO has the best capacity for optimization by contrasting the simulation tests with seven algorithms on 23 test functions. Finally, three sets of coverage optimization experiments in different simulated environments are designed to test the effectiveness of this algorithm. The validation results demonstrate that the IWHO can achieve better and more effective sensor connectivity and coverage ratio compared to that of several algorithms. After optimization, the HWSN's coverage and connectivity ratio attained 98.51% and 20.04%, and after adding obstacles, 97.79% and 17.44%, respectively.

6.
Entropy (Basel) ; 24(8)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35892997

RESUMEN

Node coverage is one of the crucial metrics for wireless sensor networks' (WSNs') quality of service, directly affecting the target monitoring area's monitoring capacity. Pursuit of the optimal node coverage encounters increasing difficulties because of the limited computational power of individual nodes, the scale of the network, and the operating environment's complexity and constant change. This paper proposes a solution to the optimal node coverage of unbalanced WSN distribution during random deployment based on an enhanced Archimedes optimization algorithm (EAOA). The best findings for network coverage from several sub-areas are combined using the EAOA. In order to address the shortcomings of the original Archimedes optimization algorithm (AOA) in handling complicated scenarios, we suggest an EAOA based on the AOA by adapting its equations with reverse learning and multidirection techniques. The obtained results from testing the benchmark function and the optimal WSN node coverage of the EAOA are compared with the other algorithms in the literature. The results show that the EAOA algorithm performs effectively, increasing the feasible range and convergence speed.

7.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591071

RESUMEN

To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems.


Asunto(s)
Algoritmos , Simulación por Computador , Tecnología Inalámbrica , Benchmarking , Recolección de Datos , Tecnología Inalámbrica/instrumentación
8.
Animals (Basel) ; 12(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35565607

RESUMEN

Computer vision has been extensively used for livestock welfare monitoring in recent years, and data collection with a sensor or camera is the first part of the complete workflow. While current practice in computer vision-based animal welfare monitoring often analyzes data collected from a sensor or camera mounted on the roof or ceiling of a laboratory, such camera placement is not always viable in a commercial confined cattle feeding environment. This study therefore sought to determine the optimal camera placement locations in a confined steer feeding operation. Measurements of cattle pens were used to create a 3D farm model using Blender 3D computer graphic software. In the first part of this study, a method was developed to calculate the camera coverage in a 3D farm environment, and in the next stage, a genetic algorithm-based model was designed for finding optimal placements of a multi-camera and multi-pen setup. The algorithm's objective was to maximize the multi-camera coverage while minimizing budget. Two different optimization methods involving multiple cameras and pen combinations were used. The results demonstrated the applicability of the genetic algorithm in achieving the maximum coverage and thereby enhancing the quality of the livestock visual-sensing data. The algorithm also provided the top 25 solutions for each camera and pen combination with a maximum coverage difference of less than 3.5% between them, offering numerous options for the farm manager.

9.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502759

RESUMEN

Wireless sensor networks (WSNs) is a multi-hop wireless network composed of a group of static or mobile sensor nodes in the form of self-organization. Uneven distribution of nodes often leads to the problem of over coverage and incomplete coverage of monitoring areas. To solve this problem, this paper establishes a network coverage optimization model and proposes a coverage optimization method based on an improved hybrid strategy weed algorithm (LRDE_IWO). The improvement of the weed algorithm includes three steps. Firstly, the standard deviation of normal distribution based on the tangent function is used as the seed's new step size in the seed diffusion stage to balance the ability of the global search and local search of weed algorithm. Secondly, to avoid the problem of premature convergence, a disturbance mechanism combining enhanced Levy flight and the adaptive random walk strategy is proposed in the process of seed breeding. Finally, in competition of invasive weed stage, the differential evolution strategy is introduced to optimize the competition operation process and speed up convergence. The improved weed algorithm is applied to coverage optimization of WSNs. The simulation results show that the coverage rate of LRDE_IWO is increased by about 1% to 6% compared with the original invade weed algorithm (IWO) and the differential evolution invasive weed optimization algorithm (DE_IWO), and the coverage rate of the LRDE_IWO algorithm is increased by 4.10%, 2.73% and 1.19%, respectively, compared with the antlion optimization algorithm (ALO), the fruit fly optimization algorithm (FOA) and the gauss mutation weed algorithm (IIWO). The results prove the superiority and validity of the improved weed algorithm for coverage optimization of wireless sensor networks.


Asunto(s)
Algoritmos , Fitomejoramiento , Simulación por Computador , Malezas , Semillas
10.
Sensors (Basel) ; 21(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921843

RESUMEN

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.

11.
Sensors (Basel) ; 19(12)2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216666

RESUMEN

The random placement of a large-scale sensor network in an outdoor environment often causes low coverage. In order to effectively improve the coverage of a wireless sensor network in the monitoring area, a coverage optimization algorithm for wireless sensor networks with a Virtual Force-Lévy-embedded Grey Wolf Optimization (VFLGWO) algorithm is proposed. The simulation results show that the VFLGWO algorithm has a better optimization effect on the coverage rate, uniformity, and average moving distance of sensor nodes than a wireless sensor network coverage optimization algorithm using Lévy-embedded Grey Wolf Optimizer, Cuckoo Search algorithm, and Chaotic Particle Swarm Optimization. The VFLGWO algorithm has good adaptability with respect to changes of the number of sensor nodes and the size of the monitoring area.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente , Tecnología Inalámbrica , Algoritmos , Redes de Comunicación de Computadores , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA