Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Eat Disord ; 57(7): 1406-1417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38174745

RESUMEN

OBJECTIVE: The development of novel treatments for anorexia nervosa (AN) requires a detailed understanding of the biological underpinnings of specific, commonly occurring symptoms, including compulsive exercise. There is considerable bio-behavioral overlap between AN and obsessive-compulsive disorder (OCD), therefore it is plausible that similar mechanisms underlie compulsive behavior in both populations. While the association between these conditions is widely acknowledged, defining the shared mechanisms for compulsive behavior in AN and OCD requires a novel approach. METHODS: We present an argument that a better understanding of the neurobiological mechanisms that underpin compulsive exercise in AN can be achieved in two critical ways. First, by applying a framework of the neuronal control of OCD to exercise behavior in AN, and second, by taking better advantage of the activity-based anorexia (ABA) rodent model to directly test this framework in the context of feeding pathology. RESULTS: A cross-disciplinary approach that spans preclinical, neuroimaging, and clinical research as well as compulsive neurocircuitry and behavior can advance our understanding of when, why, and how compulsive exercise develops in the context of AN and provide targets for novel treatment strategies. DISCUSSION: In this article, we (i) link the expression of compulsive behavior in AN and OCD via a transition between goal-directed and habitual behavior, (ii) present disrupted cortico-striatal circuitry as a key substrate for the development of compulsive behavior in both conditions, and (iii) highlight the utility of the ABA rodent model to better understand the mechanisms of compulsive behavior relevant to AN. PUBLIC SIGNIFICANCE: Individuals with AN who exercise compulsively are at risk of worse health outcomes and have poorer responses to standard treatments. However, when, why, and how compulsive exercise develops in AN remains inadequately understood. Identifying whether the neural circuitry underlying compulsive behavior in OCD also controls hyperactivity in the activity-based anorexia model will aid in the development of novel eating disorder treatment strategies for this high-risk population.


Asunto(s)
Anorexia Nerviosa , Trastorno Obsesivo Compulsivo , Anorexia Nerviosa/terapia , Anorexia Nerviosa/fisiopatología , Humanos , Animales , Trastorno Obsesivo Compulsivo/terapia , Trastorno Obsesivo Compulsivo/fisiopatología , Ejercicio Compulsivo , Modelos Animales de Enfermedad , Conducta Compulsiva/fisiopatología
2.
Front Syst Neurosci ; 16: 966433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211593

RESUMEN

The striatum is postulated to play a central role in gating cortical processing during goal-oriented behavior. While many human neuroimaging studies have treated the striatum as an undivided whole or several homogeneous compartments, some recent studies showed that its circuitry is topographically organized and has more complex relations with the cortical networks than previously assumed. Here, we took a gradient functional connectivity mapping approach that utilizes the entire anatomical space of the caudate nucleus to examine the organization of its functional relationship with the rest of the brain and how its topographic mapping changes with age. We defined the topography of the caudate functional connectivity using three publicly available resting-state fMRI datasets. We replicated and extended previous findings. First, we found two stable gradients of caudate connectivity patterns along its medial-lateral (M-L) and anterior-posterior (A-P) axes, supporting findings from previous tract-tracing studies of non-human primates that there are at least two main organizational principles within the caudate nucleus. Second, unlike previous emphasis of the A-P topology, we showed that the differential connectivity patterns along the M-L gradient of caudate are more clearly organized with the large-scale neural networks; such that brain networks associated with internal vs. external orienting behavior are respectively more closely linked to the medial vs. lateral extent of the caudate. Third, the caudate's M-L organization showed greater age-related reduction in integrity, which was further associated with age-related changes in behavioral measures of executive functions. In sum, our analysis confirmed a sometimes overlooked M-L functional connectivity gradient within the caudate nucleus, with its lateral longitudinal zone more closely linked to the frontoparietal cortical circuits and age-related changes in cognitive control. These findings provide a more precise mapping of the human caudate functional connectivity, both in terms of the gradient organization with cortical networks and age-related changes in such organization.

4.
Eur J Neurosci ; 47(6): 619-630, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28612411

RESUMEN

Temporal processing in the seconds-to-minutes range, known as interval timing, is a crucial cognitive function that requires activation of cortico-striatal circuits via dopaminergic-glutamatergic pathways. In humans, both children and adults with autism spectrum disorders (ASD) present alterations in their estimation of time intervals. At present, there are no records of interval timing studies in animal models of ASD. Hence, the objective of the present work was to evaluate interval timing in a mouse model of prenatal exposure to valproic acid (VPA) - a treatment used to induce human-like autistic features in rodent models. Animals were assessed for their ability to acquire timing responses in 15-s and 45-s peak-interval (PI) procedures. Our results indicate that both female and male mice prenatally exposed to VPA present decreased timing accuracy and precision compared to control groups, as well as deviations from the scalar property. Moreover, the observed timing deficits in male VPA mice were reversed after early social enrichment. Furthermore, catecholamine determination by HPLC-ED indicated significant differences in striatal dopaminergic, but not serotonergic, content in female and male VPA mice, consistent with previously identified alterations in dopamine metabolism in ASD. These deficits in temporal processing in a mouse model of autism complement previous results in humans, and provide a useful tool for further behavioral and pharmacological studies.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Dopamina/metabolismo , GABAérgicos/farmacología , Neostriado/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Desempeño Psicomotor/fisiología , Percepción del Tiempo/fisiología , Ácido Valproico/farmacología , Animales , Trastorno del Espectro Autista/metabolismo , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Serotonina/metabolismo , Conducta Social
5.
Front Syst Neurosci ; 10: 26, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065818

RESUMEN

We simultaneously recorded local field potentials (LFPs) in the primary motor cortex and sensorimotor striatum in awake, freely behaving, 6-OHDA lesioned hemi-parkinsonian rats in order to study the features directly related to pathological states such as parkinsonian state and levodopa-induced dyskinesia. We analyzed the spectral characteristics of the obtained signals and observed that during dyskinesia the most prominent feature was a relative power increase in the high gamma frequency range at around 80 Hz, while for the parkinsonian state it was in the beta frequency range. Here we show that during both pathological states effective connectivity in terms of Granger causality is bidirectional with an accent on the striatal influence on the cortex. In the case of dyskinesia, we also found a high increase in effective connectivity at 80 Hz. In order to further understand the 80-Hz phenomenon, we performed cross-frequency analysis and observed characteristic patterns in the case of dyskinesia but not in the case of the parkinsonian state or the control state. We noted a large decrease in the modulation of the amplitude at 80 Hz by the phase of low frequency oscillations (up to ~10 Hz) across both structures in the case of dyskinesia. This may suggest a lack of coupling between the low frequency activity of the recorded network and the group of neurons active at ~80 Hz.

6.
Brain Res ; 1602: 85-95, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25553620

RESUMEN

Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder.


Asunto(s)
Conducta Adictiva/fisiopatología , Internet , Putamen/fisiopatología , Juegos de Video , Adolescente , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiopatología , Escalas de Valoración Psiquiátrica , Corteza Somatosensorial/fisiopatología , Factores de Tiempo
7.
Eur J Neurosci ; 40(1): 2299-310, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24689904

RESUMEN

Duration discrimination within the seconds-to-minutes range, known as interval timing, involves the interaction of cortico-striatal circuits via dopaminergic-glutamatergic pathways. Besides interval timing, most (if not all) organisms exhibit circadian rhythms in physiological, metabolic and behavioral functions with periods close to 24 h. We have previously reported that both circadian disruption and desynchronization impaired interval timing in mice. In this work we studied the involvement of dopamine (DA) signaling in the interaction between circadian and interval timing. We report that daily injections of levodopa improved timing performance in the peak-interval procedure in C57BL/6 mice with circadian disruptions, suggesting that a daily increase of DA is necessary for an accurate performance in the timing task. Moreover, striatal DA levels measured by reverse-phase high-pressure liquid chromatography indicated a daily rhythm under light/dark conditions. This daily variation was affected by inducing circadian disruption under constant light (LL). We also demonstrated a daily oscillation in tyrosine hydroxylase levels, DA turnover (3,4-dihydroxyphenylacetic acid/DA levels), and both mRNA and protein levels of the circadian component Period2 (Per2) in the striatum and substantia nigra, two brain areas relevant for interval timing. None of these oscillations persisted under LL conditions. We suggest that the lack of DA rhythmicity in the striatum under LL - probably regulated by Per2 - could be responsible for impaired performance in the timing task. Our findings add further support to the notion that circadian and interval timing share some common processes, interacting at the level of the dopaminergic system.


Asunto(s)
Ritmo Circadiano/fisiología , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Proteínas Circadianas Period/metabolismo , Sustancia Negra/fisiología , Percepción del Tiempo/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Dopaminérgicos/farmacología , Levodopa/farmacología , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Estimulación Luminosa , ARN Mensajero/metabolismo , Distribución Aleatoria , Transducción de Señal , Sustancia Negra/efectos de los fármacos , Percepción del Tiempo/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 369(1637): 20120465, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24446499

RESUMEN

Biological clocks are genetically encoded oscillators that allow organisms to keep track of their environment. Among them, the circadian system is a highly conserved timing structure that regulates several physiological, metabolic and behavioural functions with periods close to 24 h. Time is also crucial for everyday activities that involve conscious time estimation. Timing behaviour in the second-to-minutes range, known as interval timing, involves the interaction of cortico-striatal circuits. In this review, we summarize current findings on the neurobiological basis of the circadian system, both at the genetic and behavioural level, and also focus on its interactions with interval timing and seasonal rhythms, in order to construct a multi-level biological clock.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Cuerpo Estriado/fisiología , Modelos Biológicos , Estaciones del Año , Percepción del Tiempo/fisiología , Animales , Mamíferos , Especificidad de la Especie , Factores de Tiempo
9.
Psychiatry Res ; 214(1): 33-41, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23916249

RESUMEN

Prepulse inhibition (PPI) of the startle reflex is disrupted in a number of developmental neuropsychiatric disorders, including Tourette syndrome (TS). This disruption is hypothesized to reflect abnormalities in sensorimotor gating. We applied whole-brain functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of PPI in adult TS subjects using airpuff stimuli to the throat to elicit a tactile startle response. We used a cross-sectional, case-control study design and a blocked-design fMRI paradigm. There were 33 participants: 17 with TS and 16 healthy individuals. As a measure of PPI-related brain activity, we looked for differential cerebral activation to prepulse-plus-pulse stimuli versus activation to pulse-alone stimuli. In healthy subjects, PPI was associated with increased activity in multiple brain regions, of which activation in the left middle frontal gyrus in the healthy controls showed a significant linear correlation with the degree of PPI measured outside of the magnet. Group comparisons identified nine regions where brain activity during PPI differed significantly between TS and healthy subjects. Among the TS subjects, activation in the left caudate was significantly correlated with current tic severity as measured by the total score on the Yale Global Tic Severity Scale. Differential activation of the caudate nucleus associated with current tic severity is consistent with neuropathological data and suggests that portions of cortical-striatal circuits may modulate the severity of tic symptoms in adulthood.


Asunto(s)
Encéfalo/fisiopatología , Inhibición Neural/fisiología , Reflejo de Sobresalto/fisiología , Síndrome de Tourette/fisiopatología , Adulto , Atención/fisiología , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estimulación Física , Tacto/fisiología , Síndrome de Tourette/diagnóstico
10.
Genes Brain Behav ; 12(6): 633-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23848551

RESUMEN

Interval timing within the seconds-to-minutes range involves the interaction of the prefrontal cortex and basal ganglia via dopaminergic-glutamatergic pathways. Because the secreted protein brain-derived neurotrophic factor (BDNF) is able to modulate dopamine release as well as glutamatergic activity, we hypothesized that BDNF may be important for these timing mechanisms. Recently, the calcium-responsive transcription factor (CaRF) was identified as an important modulator of BDNF expression in the cerebral cortex. In this study, a strain of Carf knockout mice was evaluated for their ability to acquire the 'Start' and 'Stop' response thresholds under sequential and simultaneous training conditions, using multiple (15-second and 45-second) or single (30-second) target durations in the peak-interval procedure. Both Carf(+/-) and Carf(-/-) mice were impaired in their ability to acquire timed response thresholds relative to Carf(+/+) mice. Additionally, control mice given microinjections of BDNF antisense oligodeoxynucleotide to inhibit protein expression in the prefrontal cortex showed timing impairments during acquisition similar to Carf mice. Together, these results suggest that the inhibitory processes required to update response thresholds and exert temporal control of behavior during acquisition may be dependent on CaRF regulation of genes including Bdnf in cortico-striatal circuits.


Asunto(s)
Tiempo de Reacción , Percepción del Tiempo , Factores de Transcripción/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Condicionamiento Clásico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Factores de Transcripción/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-22435054

RESUMEN

Time-based decision-making in peak-interval timing procedures involves the setting of response thresholds for the initiation ("Start") and termination ("Stop") of a response sequence that is centered on a target duration. Using intracerebral infusions of the protein synthesis inhibitor anisomycin, we report that the acquisition of the "Start" response depends on normal functioning (including protein synthesis) in the dorsal striatum (DS), but not the ventral striatum (VS). Conversely, disruption of the VS, but not the DS, impairs the acquisition of the "Stop" response. We hypothesize that the dorsal and ventral regions of the striatum function as a competitive neural network that encodes the temporal boundaries marking the beginning and end of a timed response sequence.

12.
Artículo en Inglés | MEDLINE | ID: mdl-22022309

RESUMEN

Neural timing mechanisms range from the millisecond to diurnal, and possibly annual, frequencies. Two of the main processes under study are the interval timer (seconds-to-minute range) and the circadian clock. The molecular basis of these two mechanisms is the subject of intense research, as well as their possible relationship. This article summarizes data from studies investigating a possible interaction between interval and circadian timing and reviews the molecular basis of both mechanisms, including the discussion of the contribution from studies of genetically modified animal models. While there is currently no common neurochemical substrate for timing mechanisms in the brain, circadian modulation of interval timing suggests an interaction of different frequencies in cerebral temporal processes.

13.
Front Integr Neurosci ; 6: 7, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22408612

RESUMEN

Estimations of time and number share many similarities in both non-humans and man. The primary focus of this review is on the development of time and number sense across infancy and childhood, and neuropsychological findings as they relate to time and number discrimination in infants and adults. Discussion of these findings is couched within a mode-control model of timing and counting which assumes time and number share a common magnitude representation system. A basic sense of time and number likely serves as the foundation for advanced numerical and temporal competence, and aspects of higher cognition-this will be discussed as it relates to typical childhood, and certain developmental disorders, including autism spectrum disorder. Directions for future research in the developmental neuroscience of time and number (NEUTIN) will also be highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA