Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504533

RESUMEN

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Asunto(s)
Quemaduras Químicas , Neovascularización de la Córnea , Emodina , Humanos , Ratones , Animales , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización de la Córnea/genética , Neovascularización de la Córnea/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad
2.
Case Rep Ophthalmol ; 15(1): 108-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38299081

RESUMEN

Introduction: We present a rare occurrence of bilateral corneal melting and a left-eye corneal perforation in an oncologic patient undergoing a new biological therapy. Case Presentation: A 63-year-old male with a two-day history of a painful left red eye and bilateral visual impairment was enrolled in a multicenter phase-II study comparing tobemstomig/RO7247669, a PD1-LAG3 bispecific antibody, with nivolumab. Clinical examination revealed a bilateral central corneal thinning, and corneal OCT imaging indicated a significant stromal thinning of 124 µm in the right eye and a central corneal perforation of 286 µm in the left eye. Subsequently, the patient underwent surgical intervention involving an autologous partial scleral patch with a Gundersen conjunctival flap in the left eye, alongside a comprehensive topical and systemic treatment regimen. Due to this immune-related adverse event, the patient was excluded from the clinical trial subsequently later revealing he had been on the bispecific treatment. Conclusion: While immune checkpoint inhibitors hold promise in oncology, they can lead to ocular surface issues, including dry-eye keratitis and, in severe cases, anterior segment thinning culminating in corneal perforation. Timely withdrawal of immunotherapy, coupled with multi-level treatment involving anti-inflammatory and corneal healing approaches, is crucial. In cases of corneal perforation, surgical intervention such as cyanoacrylate application or tectonic surgery becomes imperative.

3.
Am J Ophthalmol Case Rep ; 32: 101964, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38077782

RESUMEN

Purpose: To assess whether topical administration of fosaprepitant improves intractable chronic ocular pain and inflammation. Methods: We report three clinical cases of female patients with drug-resistant ocular pain associated with inflammatory diseases of the ocular surface. The patients were treated for 3 (case 1) and 4 (cases 2-3) weeks with fosaprepitant eyedrops (0.1 mg/mL for case 1; 10 mg/mL for case 2-3). Patients were then followed up for at least 3 weeks. We measured ocular pain with the Visual Analogue Scale (VAS), the Ocular Surface Disease Index (OSDI), and corneal sensitivity with the Cochet-Bonnet esthesiometry. Slit-lamp photography and corneal confocal imaging were used to assess ocular surface integrity/conjunctival hyperemia and corneal nerve morphology, respectively. Results: All three patients had severe ocular pain (score higher than 6/10 VAS scale). All patients reported a significant improvement in ocular pain after 1 week of treatment. We also observed reduced corneal epitheliopathy (case 1) and conjunctival hyperemia (cases 1-2). In two patients (cases 2-3) the treatment was repeated after 1 year and 9 weeks, respectively, and pain reduction was similar in magnitude to what we observed after the first administration. Conclusions: Topical administration of fosaprepitant ameliorates ocular pain and clinical symptoms in three patients with intractable ocular pain associated with inflammatory diseases of the ocular surface, without adverse effects. Importance: Fosaprepitant instillation holds promise as a treatment of chronic ocular pain, an area of unmet medical need.

4.
Case Rep Ophthalmol ; 14(1): 673-678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058358

RESUMEN

Introduction: With the increasing use of immune checkpoint inhibitors, ocular adverse events have gained attention. We describe a case of atypical keratitis presumably induced by atezolizumab, a programmed cell death ligand 1 inhibitor. Case Presentation: A 73-year-old Japanese woman developed ring-shaped marginal infiltrations with epithelial breakdown of the corneas in both eyes. The patient had advanced small cell lung cancer and had received intravenous carboplatin, etoposide, and atezolizumab. She was treated with topical administration of 0.1% sodium phosphate betamethasone and 0.5% moxifloxacin six times daily. On day 14 following initial presentation, marked reduction of bilateral corneal infiltration was observed. During the succeeding cycles of chemotherapy, marginal keratitis did not recur, and then, the topical steroid was gradually tapered. Conclusions: Cancer immunotherapy, including atezolizumab, may lead to active T-cell recruitment into the cornea, which result in autoimmune corneal keratitis. We believe that this report is informative to both ophthalmologists and oncologists involved in the treatment of patients receiving cancer immunotherapy.

5.
Ocul Surf ; 29: 388-397, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37327869

RESUMEN

Lumican is a keratan sulfate proteoglycan that belongs to the small leucine-rich proteoglycan family. Research has lifted the veil on the versatile roles of lumican in the pathogenesis of eye diseases. Lumican has pivotal roles in the maintenance of physiological tissue homogenesis and is often upregulated in pathological conditions, e.g., fibrosis, scar tissue formation in injured tissues, persistent inflammatory responses and immune anomaly, etc. Herein, we will review literature regarding the role of lumican in pathogenesis of inherited congenital and acquired eye diseases, e.g., cornea dystrophy, cataract, glaucoma and chorioretinal diseases, etc.


Asunto(s)
Oftalmopatías , Lumican , Humanos , Proteoglicanos Tipo Condroitín Sulfato/fisiología , Córnea/patología , Oftalmopatías/metabolismo , Oftalmopatías/patología , Sulfato de Queratano/fisiología , Proteoglicanos/fisiología
6.
Ophthalmic Epidemiol ; : 1-19, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184084

RESUMEN

PURPOSE: Herpes stromal keratitis (HSK) is an immune-mediated corneal inflammation that occurs after a herpes simplex virus infection. This paper aims to systematically identify and compare interventions for treating HSK and their patient outcomes. METHODS: This systematic review followed the PRISMA methodology. Online databases were searched to obtain all relevant papers. Two independent reviewers screened through 168 records. Seven papers were included and used for data extraction. A qualitative analysis was conducted. RESULTS: HSK patients receiving prednisolone phosphate and acyclovir showed a higher treatment success rate and significantly longer time to failure compared to patients receiving only acyclovir (P < .001). No difference in resolution time was found between oral and topical acyclovir. Between groups receiving dexamethasone and flurbiprofen, resolution occurred in 93% and 67% of patients, and BCVA (LogMAR) improved from 1.0 to 0.30 and 0.48, respectively. BCVA improved in both cyclosporine-A (P < .001) and its control (prednisolone) groups (P = .002). A tacrolimus treatment group showed greater improvement in BCVA compared to its control (prednisolone) group (P < .001). CONCLUSION: Corticosteroids and antivirals managed HSK most effectively only when used concurrently. Oral acyclovir showed similar effectiveness to its ointment counterpart, a preferable alternative for easier administration. Corticosteroid use could induce greater therapeutic benefits when tapered in concentration and frequency and administrated for at least 10 weeks. Anti-inflammatory drugs including flurbiprofen, cyclosporine-A, and tacrolimus could be safe and effective for treating HSK. Future long-term follow-up and RCTs could provide insights on the therapeutic benefits of these potential alternatives.

7.
Int Immunopharmacol ; 116: 109680, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36739832

RESUMEN

Alkali burn-induced corneal inflammation and subsequent corneal neovascularization (CNV) are major causes of corneal opacity and vision loss. M1 macrophages play a central role in inflammation and CNV. Therefore, modulation of M1 macrophage polarization is a promising strategy for corneal alkali burns. Here, we illustrate the effect and underlying mechanisms of upadacitinib on corneal inflammation and CNV induced by alkali burns in mice. The corneas of BALB/c mice were administered with 1 M NaOH for 30 s and randomly assigned to the vehicle group and the upadacitinib-treated group. Corneal opacity and corneal epithelial defects were assessed clinically. Quantitative real-time PCR (qRT-PCR), immunohistochemistry, and western blot analysis were performed to detect M1 macrophage polarization and CD31+ corneal blood vessels. The results showed that upadacitinib notably decreased corneal opacity, and promoted corneal wound healing. On day 7 and 14 after alkali burns, upadacitinib significantly suppressed CNV. Corneal alkali injury caused M1 macrophage recruitment in the cornea. In contrast to the vehicle, upadacitinib suppressed M1 macrophage infiltration and decreased the mRNA expression levels of inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1ß, and vascular endothelial growth factor A (VEGF-A) in alkali-injured corneas. Moreover, upadacitinib dose-dependently inhibited M1 macrophage polarization by suppressing interferon (IFN)-γ-/lipopolysaccharide-stimulated STAT1 activation in vitro. Our findings reveal that upadacitinib can efficiently alleviate alkali-induced corneal inflammation and neovascularization by inhibiting M1 macrophage infiltration. These data demonstrate that upadacitinib is an effective drug for the treatment of corneal alkali burns.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Neovascularización de la Córnea , Opacidad de la Córnea , Quemaduras Oculares , Queratitis , Ratones , Animales , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Álcalis/efectos adversos , Álcalis/metabolismo , Córnea , Neovascularización de la Córnea/inducido químicamente , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización de la Córnea/metabolismo , Lesiones de la Cornea/metabolismo , Macrófagos/metabolismo , Queratitis/inducido químicamente , Queratitis/tratamiento farmacológico , Inflamación/metabolismo , Opacidad de la Córnea/complicaciones , Opacidad de la Córnea/metabolismo , Opacidad de la Córnea/patología , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/patología , Modelos Animales de Enfermedad
8.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614177

RESUMEN

FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Neovascularización de la Córnea , Quemaduras Oculares , Ratas , Animales , Disulfiram/farmacología , Disulfiram/uso terapéutico , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Soluciones Oftálmicas/farmacología , Álcalis/farmacología , Seudópodos/metabolismo , Córnea/metabolismo , Macrófagos/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Neovascularización de la Córnea/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/metabolismo , Modelos Animales de Enfermedad
9.
Exp Eye Res ; 226: 109312, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400287

RESUMEN

C-X-C chemokine receptor type 5 (CXCR5) regulates inflammatory responses in ocular and non-ocular tissues. However, its expression and role in the cornea are still unknown. Here, we report the expression of CXCR5 in human cornea in vitro and mouse corneas in vivo, and its functional role in corneal inflammation using C57BL/6J wild-type (CXCR5+/+) and CXCR5-deficient (CXCR5-/-) mice, topical alkali injury, clinical eye imaging, histology, immunofluorescence, PCR, qRT-PCR, and western blotting. Human corneal epithelial cells, stromal fibroblasts, and endothelial cells demonstrated CXCR5 mRNA and protein expression in PCR, and Western blot analyses, respectively. To study the functional role of CXCR5 in vivo, mice were divided into four groups: Group-1 (CXCR5+/+ alkali injured cornea; n = 30), Group-2 (CXCR5-/- alkali injured cornea; n = 30), Group-3 (CXCR5+/+ naïve cornea; n = 30), and Group-4 (CXCR5-/- naïve cornea; n = 30). Only one eye was wounded with alkali. Clinical corneal evaluation and imaging were performed before and after injury. Mice were euthanized 4 h, 3 days, or 7 days after injury, eyes were excised and used for histology, immunofluorescence, and qRT-PCR. In clinical eye examinations, CXCR5-/- mouse corneas showed ocular health akin to the naïve corneas. Alkali injured CXCR5+/+ mouse corneas showed significantly increased mRNA (p < 0.001) and protein (p < 0.01 or p < 0.0001) levels of the CXCR5 compared to the naïve corneas. Likewise, alkali injured CXCR5-/- mouse corneas showed remarkably amplified inflammation in clinical eye exams in live animals. The histological and molecular analyses of these corneas post euthanasia exhibited markedly augmented inflammatory cells in H&E staining and significant CD11b + cells in immunofluorescence (p < 0.01 or < 0.05); and tumor necrosis factor-alpha (TNFα; p < 0.05), cyclooxygenase 2 (COX-2; p < 0.0001), interleukin (IL)-1ß (p < 0.0001), and IL-6 (p < 0.0001 or < 0.01) mRNA expression compared to the CXCR5+/+ mouse corneas. Interestingly, CXCR5-/- alkali injured corneas also showed altered mRNA expression of fibrotic alpha smooth muscle actin (α-SMA; p > 0.05) and angiogenic vascular endothelial growth factor (VEGF; p < 0.01) compared to the CXCR5+/+ alkali injured corneas. In summary, the CXCR5 gene is expressed in all three major layers of the cornea and appears to influence corneal inflammatory and repair events post-injury in vivo. More studies are warranted to tease the mechanistic role of CXCR5 in corneal inflammation and wound healing.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Quemaduras Oculares , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Córnea/metabolismo , Lesiones de la Cornea/metabolismo , Factores de Crecimiento Endotelial Vascular , Álcalis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inflamación/metabolismo , Receptores de Quimiocina/metabolismo , Quemaduras Químicas/metabolismo , Quemaduras Oculares/metabolismo
10.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077171

RESUMEN

Many studies have demonstrated the therapeutic effects of hydrogen in pathological conditions such as inflammation; however, little is known about its prophylactic effects. The purpose of this study is to investigate the prophylactic effects of hydrogen-rich water instillation in a rat corneal alkali burn model. Hydrogen-rich water (hydrogen group) or physiological saline (vehicle group) was instilled continuously to the normal rat cornea for 5 min. At 6 h after instillation, the cornea was exposed to alkali. The area of corneal epithelial defect (CED) was measured every 6 h until 24 h after alkali exposure. In addition, at 6 and 24 h after injury, histological and immunohistochemical observations were made and real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to investigate superoxide dismutase enzyme (SOD)1, SOD2, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression. CED at 12 h and the number of inflammatory infiltrating cells at 6 h after injury were significantly smaller in the hydrogen group than the vehicle group. Furthermore, SOD1 expression was significantly higher in the hydrogen group than the vehicle group at both 6 and 24 h, and the number of PGC-1α-positive cells was significantly larger in the hydrogen group than the vehicle group at 6 h after injury. In this model, prophylactic instillation of hydrogen-rich water suppressed alkali burn-induced inflammation, likely by upregulating expression of antioxidants such as SOD1 and PGC-1α. Hydrogen has not only therapeutic potential but also prophylactic effects that may suppress corneal scarring following injury and promote wound healing.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Quemaduras Oculares , Queratitis , Álcalis/farmacología , Animales , Antioxidantes/uso terapéutico , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Modelos Animales de Enfermedad , Quemaduras Oculares/tratamiento farmacológico , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Inflamación , Ratas , Superóxido Dismutasa/genética , Superóxido Dismutasa/farmacología , Superóxido Dismutasa-1/uso terapéutico , Agua/farmacología , Cicatrización de Heridas
11.
Front Pharmacol ; 13: 841267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586052

RESUMEN

Corneal neovascularization (CNV) is a sight-threatening condition usually associated with various inflammatory settings including chemical injury. High mobility group box 1 (HMGB1) is identified as an inflammatory alarmin in diverse tissue damage. Here, we evaluate the expression of HMGB1 and the consequences of its inhibition through its selective inhibitor glycyrrhizin (GLY) in alkali burn-induced corneal inflammation and neovascularization. GLY effectively attenuated alkali burn-induced HMGB1 expression at both mRNA and protein levels. Furthermore, slit-lamp analysis, ink perfusion, H&E staining, and CD31 histochemical staining showed that GLY relieved corneal neovascularization, while GLY attenuated VEGF expression via inhibiting HMGB1/NF-κB/HIF-1α signal pathway. In addition, GLY treatment decreased the cytokine expression of CCL2 and CXCL5, accompanied by the reduction of their receptors of CCR2 and CXCR2. GLY diminished the inflammatory cell infiltration of the cornea, as well as reduced the expression of IL-1ß, IL-6, and TNF-α. Moreover, treatment with GLY reduced the degree of cornea opacity through inactivating extracellular HMGB1 function, which otherwise induces TGF-ß1 release and myofibroblast differentiation. Furthermore, we found that GLY treatment attenuated the upregulation of miR-21 levels in alkali burned cornea; while inhibition of miR-21in keratocytes in vitro, significantly inhibited TGF-ß1-induced myofibroblast differentiation. Collectively, our results suggested that targeting HMGB1-NFκb axis and miR-21 by GLY could introduce a therapeutic approach to counter CNV.

12.
Regen Ther ; 20: 51-60, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35402662

RESUMEN

To assess corneal inflammation from alkali chemical burns, we examined the therapeutic effects of in situ-forming hyaluronic acid (HA) hydrogels crosslinked via blue light-induced thiol-ene reaction on a rat corneal alkali burn model. Animals were divided into three groups (n = 7 rats per group): untreated, treated with 0.1% HA eye drops, and treated with crosslinked HA hydrogels. Crosslinking of HA hydrogel followed by the administration of HA eye drops and crosslinked HA hydrogels were carried out once a day from days 0-4. Corneal re-epithelialization, opacity, neovascularization, thickness, and histology were evaluated to compare the therapeutic effects of the three groups. Further investigation was conducted on the transparency of HA hydrogels to acquire the practical capabilities of hydrogel as a reservoir for drug delivery. Compared to untreated animals, animals treated with crosslinked HA hydrogels exhibited greater corneal re-epithelialization on days 1, 2, 4, and 7 post-injury (p = 0.004, p = 0.007, p = 0.008, and p = 0.034, respectively) and the least corneal neovascularization (p = 0.008). Histological analysis revealed lower infiltration of stromal inflammatory cells and compact collagen structure in crosslinked HA hydrogel-treated animals than in untreated animals. These findings corresponded with immunohistochemical analyses indicating that the expression of inflammatory markers such as α-SMA, MMP9, and IL1-ß was lower in animals treated with crosslinked HA hydrogels than untreated animals and animals treated only with 0.1% HA eye drops. With beneficial pharmacological effects such as re-epithelization and anti-inflammation, in situ-forming hyaluronic acid (HA) hydrogels may be a promising approach to effective drug delivery in cases of corneal burn injuries.

13.
Toxicol Appl Pharmacol ; 437: 115904, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35108561

RESUMEN

Nitrogen mustard (NM) is an analogue of the potent vesicating agent sulfur mustard, with well-established ocular injury models in rabbit eyes to study vesicant-induced ocular toxicity. The effects of NM-exposure to eyes may include irritation, redness, inflammation, fibrosis, epithelial degradation, blurred vision, partial/complete blindness, which may be temporary or permanent, depending on the route, duration, and dosage of exposure. Effective countermeasures against vesicant exposure are presently not available and are warranted in case of any terrorist activity or accidental leakage from stockpiles. Herein, our focus was to evaluate whether dexamethasone (DEX), an FDA approved potent corticosteroid with documented anti-inflammatory activities, could be an effective treatment modality. Accordingly, utilizing NM-induced corneal injuries in rabbit ocular in vivo model, we examined and compared the efficacy of DEX treatments when administration was started at early (2 h), intermediate (4 h), and late (6 h) therapeutic windows of intervention after NM-exposure and administered every 8 h thereafter. The effects of NM-exposure and DEX treatments were evaluated on clinical (corneal opacity, ulceration, and neovascularization), biological (epithelial thickness, epithelial-stromal separation, blood vessels density, and inflammatory cell and keratocyte counts) and molecular (COX-2 and VEGF expression) parameters, at day 1, 3, 7 and 14. Results indicated that DEX treatment markedly and effectively reversed the NM-induced injury markers in rabbit corneas. Early administration of DEX at 2 h was found to be most effective in reversing NM-induced corneal injuries, followed by DEX 4 h and DEX 6 h administration initiation, indicating that DEX has best efficacy at the early therapeutic window in our study model.


Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Dexametasona/uso terapéutico , Mecloretamina/toxicidad , Animales , Biomarcadores , Irritantes/toxicidad , Masculino , Conejos
14.
Int Immunopharmacol ; 102: 108426, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34906854

RESUMEN

OBJECTIVES: To explore the role of the corneal sensory nerves in Pseudomonas aeruginosa (P. aeruginosa) keratitis, the synergistic effect between the sensory neurons and macrophages in calcitonin gene-related peptide (CGRP) release, and the functional mechanisms of CGRP-mediated transformation of macrophages to the M2 phenotype. METHODS: Corneal nerve loss, macrophage recruitment, and CGRP expression were evaluated. To explore the synergistic effect between the sensory neurons and macrophages, RAW 264.7 cells were challenged with lipopolysaccharide (LPS), then trigeminal ganglion (TG) sensory neurons were isolated and co-incubated with macrophages, and CGRP expression was tested. To investigate the biological function of cornea neuron-initiated immune responses mediated by CGRP, BIBN 4096BS was used to inhibit CGRP in vivo and α-CGRP was used to simulate CGRP in vitro. The expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IL-10), M1 (CD80/CD86), M2 (CD163/CD206) macrophage markers, and signal transducers (PI3K/AKT) were detected. RESULTS: P. aeruginosa infection induced corneal nerve loss, macrophage recruitment, and CGRP up-expression. CGRP was co-localized with macrophages. Co-culture showed that sensory neurons and macrophages can mediate CGRP release. More CGRP was released when the two types of cells were combined to respond to LPS. BIBN 4096BS promoted pro-inflammatory cytokines and inhibited the anti-inflammatory cytokines and signal transducers, while, α-CGRP inhibited the pro-inflammatory cytokines and M1 markers and promoted the anti-inflammatory cytokine, M2 markers, and signal transducers. CONCLUSIONS: P. aeruginosa infection induces corneal sensory neuron activation, macrophage recruitment, and CGRP up-expression. The synergistic effect between the sensory neurons and macrophages promotes CGRP release. CGRP inhibits corneal inflammation and promotes the transformation of macrophages to the M2 phenotype through the PI3K/AKT signaling pathway.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Queratitis/metabolismo , Macrófagos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Animales , Queratitis/inmunología , Queratitis/microbiología , Queratitis/patología , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Células Receptoras Sensoriales/fisiología
15.
Front Med (Lausanne) ; 8: 767967, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869482

RESUMEN

After the unilateral inflammation or nerve lesion of the ocular surface, the ipsilateral corneal sensory nerve activity is activated and sensitized, evoking ocular discomfort, irritation, and pain referred to the affected eye. Nonetheless, some patients with unilateral ocular inflammation, infection, or surgery also reported discomfort and pain in the contralateral eye. We explored the possibility that such altered sensations in the non-affected eye are due to the changes in their corneal sensory nerve activity in the contralateral, not directly affected eye. To test that hypothesis, we recorded the impulse activity of the corneal mechano- and polymodal nociceptor and cold thermoreceptor nerve terminals in both eyes of guinea pigs, subjected unilaterally to three different experimental conditions (UV-induced photokeratitis, microkeratome corneal surgery, and chronic tear deficiency caused by removal of the main lacrimal gland), and in eyes of naïve animals ex vivo. Overall, after unilateral eye damage, the corneal sensory nerve activity appeared to be also altered in the contralateral eye. Compared with the naïve guinea pigs, animals with unilateral UV-induced mild corneal inflammation, showed on both eyes an inhibition of the spontaneous and stimulus-evoked activity of cold thermoreceptors, and increased activity in nociceptors affecting both the ipsilateral and the contralateral eye. Unilateral microkeratome surgery affected the activity of nociceptors mostly, inducing sensitization in both eyes. The removal of the main lacrimal gland reduced tear volume and increased the cold thermoreceptor activity in both eyes. This is the first direct demonstration that unilateral corneal nerve lesion, especially ocular surface inflammation, functionally affects the activity of the different types of corneal sensory nerves in both the ipsilateral and contralateral eyes. The mechanisms underlying the contralateral affectation of sensory nerves remain to be determined, although available data support the involvement of neuroimmune interactions. The parallel alteration of nerve activity in contralateral eyes has two main implications: a) in the experimental design of both preclinical and clinical studies, where the contralateral eyes cannot be considered as a control; and, b) in the clinical practice, where clinicians must consider the convenience of treating both eyes of patients with unilateral ocular conditions to avoid pain and secondary undesirable effects in the fellow eye.

16.
Ophthalmol Ther ; 10(4): 1077-1092, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34669183

RESUMEN

INTRODUCTION: Noninfectious keratitis is a painful corneal inflammation treated with topical cyclosporine and other immunosuppressants. Additional treatment options are needed for keratitis that does not improve with standard therapies. Repository corticotropin injection (RCI; Acthar® Gel) is approved to treat severe acute and chronic allergic and inflammatory processes involving the eye and its adnexa, including keratitis. This phase 4, multicenter, open-label study assessed the efficacy and safety of RCI for refractory severe noninfectious keratitis. METHODS: Patients were ≥ 18 years old with persistent severe keratitis despite treatment with topical immunosuppressants. Patients received 80 U of RCI subcutaneously twice weekly for 12 weeks followed by a 4-week taper. Assessments included all domains of the Impact of Dry Eye on Everyday Life (IDEEL) Questionnaire, Ocular Discomfort and 4-Symptom Questionnaire, and Visual Analog Scale (VAS). Corneal fluorescein and conjunctival lissamine green staining, Conjunctival Redness Scale, tear production (Schirmer's test), visual acuity, slit lamp examination, and intraocular pressure were also assessed. Safety was evaluated via treatment-emergent adverse events. Analyses were performed using the modified intent-to-treat (mITT) population (patients who received ≥ 1 dose of RCI and contributed any post-baseline efficacy data). RESULTS: In the mITT population (N = 35), 50.0% (95% confidence interval, 33.2% to 66.8%) of patients experienced clinically important improvements in the symptom bother domain of the IDEEL Questionnaire at week 12 of RCI therapy. All domains of the IDEEL and the Ocular Discomfort and 4-Symptom Questionnaire showed improvements at week 12 of RCI treatment. The most pronounced improvements in the VAS at week 12 were for eye dryness and eye discomfort. Corneal staining, conjunctival staining, conjunctival redness, and tear production showed early improvements that were sustained through week 12. No new safety signals for RCI were identified. CONCLUSIONS: RCI is safe and effective for refractory severe noninfectious keratitis that has not improved with other approved therapies. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT04169061.

17.
Pharmaceutics ; 13(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34575548

RESUMEN

The anti-inflammatory cytokine Interleukin-10 (IL-10) is considered an efficient treatment for corneal inflammation, in spite of its short half-life and poor eye bioavailability. In the present work, mRNA-based nanomedicinal products based on solid lipid nanoparticles (SLNs) were developed in order to produce IL-10 to treat corneal inflammation. mRNA encoding green fluorescent protein (GFP) or human IL-10 was complexed with different SLNs and ligands. After, physicochemical characterization, transfection efficacy, intracellular disposition, cellular uptake and IL-10 expression of the nanosystems were evaluated in vitro in human corneal epithelial (HCE-2) cells. Energy-dependent mechanisms favoured HCE-2 transfection, whereas protein production was influenced by energy-independent uptake mechanisms. Nanovectors with a mean particle size between 94 and 348 nm and a positive superficial charge were formulated as eye drops containing 1% (w/v) of polyvinyl alcohol (PVA) with 7.1-7.5 pH. After three days of topical administration to mice, all formulations produced GFP in the corneal epithelium of mice. SLNs allowed the obtaining of a higher transfection efficiency than naked mRNA. All formulations produce IL-10, and the interleukin was even observed in the deeper layers of the epithelium of mice depending on the formulation. This work shows the potential application of mRNA-SLN-based nanosystems to address corneal inflammation by gene augmentation therapy.

18.
Front Cell Dev Biol ; 9: 672625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055805

RESUMEN

Microenvironmental signals produced during development or inflammation stimulate lymphatic endothelial cells to undergo lymphangiogenesis, in which they sprout, proliferate, and migrate to expand the vascular network. Many cell types detect changes in extracellular conditions via primary cilia, microtubule-based cellular protrusions that house specialized membrane receptors and signaling complexes. Primary cilia are critical for receipt of extracellular cues from both ligand-receptor pathways and physical forces such as fluid shear stress. Here, we report the presence of primary cilia on immortalized mouse and primary adult human dermal lymphatic endothelial cells in vitro and on both luminal and abluminal domains of mouse corneal, skin, and mesenteric lymphatic vessels in vivo. The purpose of this study was to determine the effects of disrupting primary cilia on lymphatic vessel patterning during development and inflammation. Intraflagellar transport protein 20 (IFT20) is part of the transport machinery required for ciliary assembly and function. To disrupt primary ciliary signaling, we generated global and lymphatic endothelium-specific IFT20 knockout mouse models and used immunofluorescence microscopy to quantify changes in lymphatic vessel patterning at E16.5 and in adult suture-mediated corneal lymphangiogenesis. Loss of IFT20 during development resulted in edema, increased and more variable lymphatic vessel caliber and branching, as well as red blood cell-filled lymphatics. We used a corneal suture model to determine ciliation status of lymphatic vessels during acute, recurrent, and tumor-associated inflammatory reactions and wound healing. Primary cilia were present on corneal lymphatics during all of the mechanistically distinct lymphatic patterning events of the model and assembled on lymphatic endothelial cells residing at the limbus, stalk, and vessel tip. Lymphatic-specific deletion of IFT20 cell-autonomously exacerbated acute corneal lymphangiogenesis resulting in increased lymphatic vessel density and branching. These data are the first functional studies of primary cilia on lymphatic endothelial cells and reveal a new dimension in regulation of lymphatic vascular biology.

19.
Exp Eye Res ; 207: 108581, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33865843

RESUMEN

Fungal keratitis (FK) pathology is driven by both fungal growth and inflammation within the corneal stroma. Standard in vitro infection models ̶ involving co-culture of the pathogen and the corneal cells in tissue culture medium ̶ are sufficient to probe host responses to the fungus; however, they lack the physiological structure and nutrient composition of the stroma to accurately study fungal invasiveness and metabolic processes. We therefore sought to develop a culture model of FK that would allow for both host and fungal cell biology to be evaluated in parallel. Towards this end, we employed a previously described system in which primary human cornea fibroblasts (HCFs) are cultured on transwell membranes, whereupon they secrete a three-dimensional (3D) collagen matrix that resembles the human stroma. We demonstrated that two common mold agents of FK, Fusarium petroliphilum and Aspergillus fumigatus, penetrated into these constructs and caused a disruption of the collagen matrix that is characteristic of infection. HCF morphology appeared altered in the presence of fungus and electron microscopy revealed a clear internalization of fungal spores into these cells. Consistent with this apparent phagocyte-like activity of the HCFs, mRNA and protein levels for several pro-inflammatory cytokines/chemokines (including TNFα, IL-1ß, IL-6, and IL-8) were significantly upregulated compared to uninfected samples. We similarly found an upregulation of several HCF metalloproteases (MMPs), which are enzymes that breakdown collagen during wound healing and may further activate pro-inflammatory signaling molecules. Finally, several fungal collagenase genes were upregulated during growth in the constructs relative to growth in tissue culture media alone, suggesting a fungal metabolic shift towards protein catabolism. Taken together, our results indicate that this 3D-stromal model provides a physiologically relevant system to study host and fungal cell pathobiology during FK.


Asunto(s)
Aspergilosis/microbiología , Queratocitos de la Córnea/microbiología , Úlcera de la Córnea/microbiología , Infecciones Fúngicas del Ojo/microbiología , Fusariosis/microbiología , Interacciones Huésped-Patógeno/fisiología , Animales , Aspergilosis/metabolismo , Aspergilosis/patología , Aspergillus fumigatus/fisiología , Técnicas de Cultivo de Célula , Queratocitos de la Córnea/metabolismo , Sustancia Propia/metabolismo , Sustancia Propia/microbiología , Sustancia Propia/ultraestructura , Úlcera de la Córnea/metabolismo , Úlcera de la Córnea/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infecciones Fúngicas del Ojo/metabolismo , Infecciones Fúngicas del Ojo/patología , Fusariosis/metabolismo , Fusariosis/patología , Fusarium/fisiología , Humanos , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Antioxidants (Basel) ; 10(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804126

RESUMEN

Cytotoxic T lymphocyte antigen-2 (CTLA-2) alpha has been reported to suppress the activities of cathepsin L (Cath L), which is deeply involved in angiogenesis. Therefore, we assessed whether CTLA-2 alpha plays a role in angiogenesis in ocular tissue. To establish models of corneal inflammation and experimental choroidal neovascularization (CNV), male C57BL/6J mice (n = 5) underwent corneal suture placement or laser-induced CNV, respectively. Mice were then injected with recombinant CTLA-2 alpha (1 µg) into the peritoneal cavity at day 0 and every 2 days after operation. In vitro experiments were performed to assess the inflammatory response by measuring TNF-alpha secretion in peritoneal cavity exudate cells (PECs) or the proliferation of mouse vascular endothelial cells (mVECs). CTLA-2 alpha treatment dramatically suppressed corneal angiogenesis, as well as laser-induced CNV. Moreover, CTLA-2 alpha inhibited the proliferation of mVECs in vitro, while CTLA-2 alpha abolishment was able to rescue proliferation. However, CTLA-2 alpha could not suppress cytokine secretion from inflammatory cells such as PECs. In summary, CTLA-2 alpha was able to suppress angiogenesis by suppressing endothelial cell proliferation. Further studies are needed to investigate its usefulness as a new antiangiogenic treatment for a variety of conditions, including age-related macular degeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA