Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 949: 175069, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079632

RESUMEN

Pentachlorophenol (PCP) is widely found in coastal environments and has various adverse effects, and its potential impact on coral reef ecosystems concerning. The scleractinian coral Montipora digitata was used for PCP stress experiments in this study. Phenotypes, physiological indicators, microbial diversity analysis and RNA sequencing were used to investigate the mechanisms underlying the responses of corals to acute and chronic PCP exposure. After 96 h of acute exposure, coral bleaching occurred at 1000 µg/LPCP and there was a significant decrease in Symbiodiniaceae density, Fv/Fm, and chlorophyll a content. Exposure to different concentrations of PCP significantly increased the content of malondialdehyde (MDA), leading to oxidative stress in corals. Chronic PCP exposure resulted in bleaching at 60 days, with the Fv/Fm significantly reduced to 0.461. Microbial diversity analysis revealed an increase in the abundance of potential pathogens, such as Vibrio, during acute PCP exposure and the emergence of the degrading bacterium Delftia during chronic PCP exposure. Transcriptional analysis showed that PCP exposure caused abnormal carbohydrate and amino acid metabolism in zooxanthella, which affected energy supply, induced immune responses, and disrupted symbiotic relationships. Corals respond to injury by boosting the expression of genes associated with signal transduction and immune response. Additionally, the expression of genes associated with environmental adaptation increased with chronic PCP exposure, which is consistent with the results of the microbial diversity analysis. These results indicate that PCP exposure might affect the balance of coral- zooxanthellae symbiosis in the stony coral M. digitata, impairing coral health and leading to bleaching.


Asunto(s)
Antozoos , Arrecifes de Coral , Pentaclorofenol , Contaminantes Químicos del Agua , Antozoos/fisiología , Antozoos/efectos de los fármacos , Pentaclorofenol/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo
2.
Mar Pollut Bull ; 196: 115423, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862847

RESUMEN

Bottom trawling can significantly affect benthic communities, directly through immediate removal of sessile organisms and indirectly through sediment resuspension. Submarine canyons, often surrounded by fishing grounds, are important habitats for cold-water corals (CWC). Vulnerability of CWCs to increased suspended sediment concentration (SSC) is key to understanding the severity of bottom trawling effects on those communities. Here we show survival, growth, and physiological response of six CWCs from a Mediterranean submarine canyon (Dendrophyllia cornigera, Desmophyllum dianthus, Desmophyllum pertusum, Madrepora oculata, Leiopathes glaberrima and Muriceides lepida), exposed to a long-term, aquarium-based sedimentary disturbance experiment. Compared to cup coral and octocoral, which did not exhibit symptoms of distress, our data indicate that colonial scleractinian corals and black coral, which experienced substantial polyp mortality in enhanced SSC treatments, are more vulnerable. Indirect impact of bottom trawling could thus contribute to structural simplification of CWC communities posing an additional stressor alongside with global climate change.


Asunto(s)
Antozoos , Caza , Animales , Antozoos/fisiología , Ecosistema , Agua , Navíos
3.
Ecol Evol ; 12(3): e8613, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342609

RESUMEN

Coral reefs provide a range of important services to humanity, which are underpinned by community-level ecological processes such as coral calcification. Estimating these processes relies on our knowledge of individual physiological rates and species-specific abundances in the field. For colonial animals such as reef-building corals, abundance is frequently expressed as the relative surface cover of coral colonies, a metric that does not account for demographic parameters such as coral size. This may be problematic because many physiological rates are directly related to organism size, and failure to account for linear scaling patterns may skew estimates of ecosystem functioning. In the present study, we characterize the scaling of three physiological rates - calcification, respiration, and photosynthesis - considering the colony size for six prominent, reef-building coral taxa in Mo'orea, French Polynesia. After a seven-day acclimation period in the laboratory, we quantified coral physiological rates for three hours during daylight (i.e., calcification and gross photosynthesis) and one hour during night light conditions (i.e., dark respiration). Our results indicate that area-specific calcification rates are higher for smaller colonies across all taxa. However, photosynthesis and respiration rates remain constant over the colony-size gradient. Furthermore, we revealed a correlation between the demographic dynamics of coral genera and the ratio between net primary production and calcification rates. Therefore, intraspecific scaling of reef-building coral physiology not only improves our understanding of community-level coral reef functioning but it may also explain species-specific responses to disturbances.

4.
Environ Pollut ; 302: 119054, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219792

RESUMEN

Perfluorooctane sulfonate (PFOS) is among the most commonly per- and poly-fluoroalkyl substances (PFAS) found in environmental samples. Nevertheless, the effect of this legacy persistent organic contaminant has never been investigated on corals to date. Corals are the keystone organisms of coral reef ecosystems and sensitive to rising ocean temperatures, but it is not understood how the combination of elevated temperature and PFOS exposure will affect them. Therefore, the aims of the present study were (1) to evaluate the time-dependent bioconcentration and depuration of PFOS in the scleractinian coral Stylophora pistillata using a range of PFOS exposure concentrations, and (2) to assess the individual and combined effects of PFOS exposure and elevated seawater temperature on key physiological parameters of the corals. Our results show that the coral S. pistillata rapidly bioconcentrates PFOS from the seawater and eliminates it 14 days after ceasing the exposure. We also observed an antagonistic effect between elevated temperature and PFOS exposure. Indeed, a significantly reduced PFOS bioconcentration was observed at high temperature, likely due to a loss of symbionts and a higher removal of mucus compared to ambient temperature. Finally, concentrations of PFOS consistent with ranges observed in surface waters were non-lethal to corals, in the absence of other stressors. However, PFOS increased lipid peroxidation in coral tissue, which is an indicator of oxidative stress and enhanced the thermal stress-induced impairment of coral physiology. This study provides valuable insights into the combined effects of PFOS exposure and ocean warming for coral's physiology. PFOS is usually the most prevalent but not the only PFAS defected in reef waters, and thus it will be also important to monitor PFAS mixture concentrations in the oceans and to study their combined effects on aquatic wildlife.


Asunto(s)
Antozoos , Fluorocarburos , Ácidos Alcanesulfónicos , Animales , Antozoos/fisiología , Arrecifes de Coral , Ecosistema , Fluorocarburos/toxicidad , Calor , Estrés Oxidativo
5.
PeerJ ; 9: e11100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828920

RESUMEN

Global climate change is causing increasing variability and extremes in weather worldwide, a trend set to continue. In recent decades both anomalously warm and cold seawater temperatures have resulted in mass coral bleaching events. Whilst corals' response to elevated temperature has justifiably attracted substantial research interest, coral physiology under cold water stress is relatively unfamiliar. The response to below typical winter water temperature was tested for two common reef building species from the Gulf of Aqaba in an ex situ experiment. Stylophora pistillata and Acropora eurystoma were exposed to 1 or 3 °C below average winter temperature and a suite of physiological parameters were assessed. At 3 °C below winter minima (ca. 18.6 °C), both species had significant declines in photosynthetic indices (maximum quantum yield, electron transport rate, saturation irradiance, and photochemical efficiency) and chlorophyll concentration compared to corals at ambient winter temperatures. It was previously unknown that corals at this site live close to their cold-water bleaching threshold and may be vulnerable as climate variability increases in magnitude. In order to determine if a cold winter reduces the known heat resistance of this population, the corals were subsequently exposed to an acute warm period at 30 °C the following summer. Exposed to above typical summer temperatures, both species showed fewer physiological deviations compared to the cold-water stress. Therefore, the cold winter experience did not increase corals' susceptibility to above ambient summer temperatures. This study provides further support for the selection of heat tolerant genotypes colonising the Red Sea basin and thereby support the mechanism behind the Reef Refuge Hypothesis.

6.
Glob Chang Biol ; 27(12): 2728-2743, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33784420

RESUMEN

Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching-resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular-level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching-resistant and bleaching-susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching-susceptible corals had lower intracellular pH than bleaching-resistant corals at the peak of bleaching for both symbiont-hosting and symbiont-free cells, indicating greater disruption of acid-base homeostasis in bleaching-susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid-base regulation was significantly impaired at the cellular level even in bleaching-resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid-base regulation may further exacerbate the physiological effects of climate change.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Hawaii , Homeostasis , Concentración de Iones de Hidrógeno , Agua de Mar , Simbiosis
7.
J Exp Biol ; 223(Pt 21)2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32943577

RESUMEN

Coral reefs, one of the most diverse ecosystems in the world, face increasing pressures from global and local anthropogenic stressors. Therefore, a better understanding of the ecological ramifications of warming and land-based inputs (e.g. sedimentation and nutrient loading) on coral reef ecosystems is necessary. In this study, we measured how a natural nutrient and sedimentation gradient affected multiple facets of coral functionality, including endosymbiont and coral host response variables, holobiont metabolic responses and percent cover of Pocillopora acuta colonies in Mo'orea, French Polynesia. We used thermal performance curves to quantify the relationship between metabolic rates and temperature along the environmental gradient. We found that algal endosymbiont percent nitrogen content, endosymbiont densities and total chlorophyll a content increased with nutrient input, while endosymbiont nitrogen content per cell decreased, likely representing competition among the algal endosymbionts. Nutrient and sediment loading decreased coral metabolic responses to thermal stress in terms of their thermal performance and metabolic rate processes. The acute thermal optimum for dark respiration decreased, along with the maximal performance for gross photosynthetic and calcification rates. Gross photosynthetic and calcification rates normalized to a reference temperature (26.8°C) decreased along the gradient. Lastly, percent cover of P. acuta colonies decreased by nearly two orders of magnitude along the nutrient gradient. These findings illustrate that nutrient and sediment loading affect multiple levels of coral functionality. Understanding how local-scale anthropogenic stressors influence the responses of corals to temperature can inform coral reef management, particularly in relation to the mediation of land-based inputs into coastal coral reef ecosystems.


Asunto(s)
Antozoos , Animales , Clorofila A , Arrecifes de Coral , Ecosistema , Nutrientes , Polinesia
8.
Mar Pollut Bull ; 153: 111005, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32275553

RESUMEN

Stress-tolerant coral species, such as Platygyra spp., are considered to be well adapted to survive in marginal reefs, but their physiological response to short term exposure to abnormally high temperature and lowered salinity remains poorly understood. Using non-invasive techniques to quantitatively assess the health of Platygyra carnosa (e.g. respiration, photosynthesis, biocalcification and whiteness), we identified the plasticity of its energetics and physiological limits. Although these indicators suggest that it can survive to increasing temperature (25-32 °C), its overall energetics were seriously diminished at temperatures >30 °C. In contrast, it was well adapted to hyposaline waters (31-21 psu) but with reduced biocalcification, indicating short term adaptation for expected future changes in salinity driven by increased amounts and intensities of precipitation. Our findings provide useful insights to the effect of these climate drivers on P. carnosa metabolism and thus better forecast changes in their health status under future climate change scenarios.


Asunto(s)
Antozoos/fisiología , Tolerancia a la Sal , Aclimatación , Animales , Cambio Climático , Arrecifes de Coral , Hong Kong , Salinidad , Temperatura
9.
PeerJ ; 7: e7382, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428541

RESUMEN

For reefs in South East Asia the synergistic effects of rapid land development, insufficient environmental policies and a lack of enforcement has led to poor water quality and compromised coral health from increased sediment and pollution. Those inshore turbid coral reefs, subject to significant sediment inputs, may also inherit some resilience to the effects of thermal stress and coral bleaching. We studied the inshore turbid reefs near Miri, in northwest Borneo through a comprehensive assessment of coral cover and health in addition to quantifying sediment-related parameters. Although Miri's Reefs had comparatively low coral species diversity, dominated by massive and encrusting forms of Diploastrea, Porites, Montipora, Favites, Dipsastrea and Pachyseris, they were characterized by a healthy cover ranging from 22 to 39%. We found a strong inshore to offshore gradient in hard coral cover, diversity and community composition as a direct result of spatial differences in sediment at distances <10 km. As well as distance to shore, we included other environmental variables like reef depth and sediment trap accumulation and particle size that explained 62.5% of variation in benthic composition among sites. Miri's reefs showed little evidence of coral disease and relatively low prevalence of compromised health signs including bleaching (6.7%), bioerosion (6.6%), pigmentation response (2.2%), scars (1.1%) and excessive mucus production (0.5%). Tagged colonies of Diploastrea and Pachyseris suffering partial bleaching in 2016 had fully (90-100%) recovered the following year. There were, however, seasonal differences in bioerosion rates, which increased five-fold after the 2017 wet season. Differences in measures of coral physiology, like that of symbiont density and chlorophyll a for Montipora, Pachyseris and Acropora, were not detected among sites. We conclude that Miri's reefs may be in a temporally stable state given minimal recently dead coral and a limited decline in coral cover over the last two decades. This study provides further evidence that turbid coral reefs exposed to seasonally elevated sediment loads can exhibit relatively high coral cover and be resilient to disease and elevated sea surface temperatures.

10.
Proc Biol Sci ; 286(1907): 20190882, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31311470

RESUMEN

Concomitant to the decline of tropical corals caused by increasing global sea temperatures is the potential removal of barriers to species range expansions into subtropical and temperate habitats. In these habitats, species must tolerate lower annual mean temperature, wider annual temperature ranges and lower minimum temperatures. To understand ecophysiological traits that will impact geographical range boundaries, we monitored populations of five coral species within a marginal habitat and used a year of in situ measures to model thermal performance of vital host, symbiont and holobiont physiology. Metabolic responses to temperature revealed two acclimatization strategies: peak productivity occurring at annual midpoint temperatures (4-6°C lower than tropical counterparts), or at annual maxima. Modelled relationships between temperature and P:R were compared to a year of daily subtropical sea temperatures and revealed that the relatively short time spent at any one temperature, limited optimal performance of all strategies to approximately half the days of the year. Thus, while subtropical corals can adjust their physiology to persist through seasonal lows, seasonal variation seems to be the key factor limiting coral productivity. This constraint on rapid reef accretion within subtropical environments provides insight into the global distribution of future coral reefs and their ecosystem services.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Aclimatación/fisiología , Animales , Antozoos/fisiología , Hong Kong , Calor , Modelos Biológicos , Especificidad de la Especie
11.
Front Microbiol ; 8: 784, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28588555

RESUMEN

Corals display circadian physiological cycles, changing from autotrophy during the day to heterotrophy during the night. Such physiological transition offers distinct environments to the microbial community associated with corals: an oxygen-rich environment during daylight hours and an oxygen-depleted environment during the night. Most studies of coral reef microbes have been performed on samples taken during the day, representing a bias in the understanding of the composition and function of these communities. We hypothesized that coral circadian physiology alters the composition and function of microbial communities in reef boundary layers. Here, we analyzed microbial communities associated with the momentum boundary layer (MBL) of the Brazilian endemic reef coral Mussismilia braziliensis during a diurnal cycle, and compared them to the water column. We determined microbial abundance and nutrient concentration in samples taken within a few centimeters of the coral's surface every 6 h for 48 h, and sequenced microbial metagenomes from a subset of the samples. We found that dominant taxa and functions in the coral MBL community were stable over the time scale of our sampling, with no significant shifts between night and day samples. Interestingly, the two water column metagenomes sampled 1 m above the corals were also very similar to the MBL metagenomes. When all samples were analyzed together, nutrient concentration significantly explained 40% of the taxonomic dissimilarity among dominant genera in the community. Functional profiles were highly homogenous and not significantly predicted by any environmental variables measured. Our data indicated that water flow may overrule the effects of coral physiology in the MBL bacterial community, at the scale of centimeters, and suggested that sampling resolution at the scale of millimeters may be necessary to address diurnal variation in community composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA