Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
1.
Polymers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274027

RESUMEN

The utilization of biopolymers incorporated with antimicrobial agents is extremely interesting in the development of environmentally friendly functional materials for food packaging and other applications. In this study, the effect of calcium oxide (CaO) on the morphological, mechanical, thermal, and hydrophilic properties as well as the antimicrobial activity of carboxymethyl chitosan (CMCH) bio-composite films was investigated. The CMCH was synthesized from shrimp chitosan through carboxymethylation, whereas the CaO was synthesized via a co-precipitation method with polyethylene glycol as a stabilizer. The CMCH-CaO bio-composite films were prepared by the addition of synthesized CaO into the synthesized CMCH using a facile solution casting method. As confirmed by XRD and SEM, the synthesized CaO has a cubic shape, with an average crystalline size of 25.84 nm. The synthesized CaO exhibited excellent antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (>99.9% R). The addition of CaO into CMCH improved the mechanical and hydrophobic properties of the CMCH-CaO films. However, it resulted in a slight decrease in thermal stability. Notably, the CMCH-CaO10% films exhibited exceptional antimicrobial activity against E. coli (98.8% R) and S. aureus (91.8% R). As a result, such bio-composite films can be applied as an active packaging material for fruit, vegetable, or meat products.

2.
Sci Rep ; 14(1): 21499, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277706

RESUMEN

Cadmium is a toxic heavy metal found in acid mine drainage. It hinders plant and animal growth and accumulates in human organs. In this study, through shake flask experiments, an iron-rich, sulphate-rich environment was simulated, and Acidithiobacillus ferrooxidans was used to mediate the formation of secondary high-iron minerals to explore the effect of calcium ions on the removal of Cd2+ from that environment. Four treatment systems were used: "Blank", "Ca2+-30 mg/L", "Fe/K = 3,Ca2+-30 mg/L", and "Fe/K = 3". The results showed that Cd2+ with an initial concentration of 20 mg/L was effectively removed in each treatment system. The removal efficiencies of Cd2+ in each treatment were 23.46%, 18.42%, 52.88%, and 45.76% respectively. The quantity and type of minerals determined the removal efficiency of Cd2+. The Fe/K = 3 treatment system can significantly increase the amount of mineral formation and improve the removal efficiency of Cd2+. In the Ca2+-30 mg/L, Fe/K = 3 treatment system, the biological oxidation ability was the strongest, and the removal effect of Cd2+ was the best under the combined action of K+ and Ca2+. Co-precipitation was the main way to remove Cd2+ during the formation of biogenic secondary iron minerals, and the removal amount was 5.64 to 14.83 times that of adsorption. Biogenetic secondary iron minerals showed high values in repairing heavy metal pollution. This study provides a theoretical basis for treating heavy metals in acid mine drainage.


Asunto(s)
Acidithiobacillus , Cadmio , Calcio , Hierro , Minerales , Cadmio/metabolismo , Calcio/metabolismo , Calcio/química , Hierro/metabolismo , Acidithiobacillus/metabolismo , Minerales/metabolismo , Minerales/química , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción
3.
Environ Technol ; : 1-12, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221764

RESUMEN

Secondary iron minerals play significant roles in the immobilization of As under acidic conditions, such as acid mine drainage. However, previous research works have not clarified the effect of pH on As(III) removal through coprecipitation with secondary minerals. Therefore, in this study, we aimed to investigate the discrepancy in As(III) coprecipitation with biogenic synthesized schwertmannite (Sch) and jarosite (Jar) at different pH values. For this, concentrations of Fe2+, TFe, SO42-, and As(III) in shake flasks were monitored during an overall incubation period of 83 h at initial pH of 1.5, 2.0, and 2.5. In addition, the physicochemical properties of collected minerals after incubation were identified using scanning electron microscopy, X-ray diffraction, pore size distribution, and Brunauer - Emmett - Teller surface area analyses. Our results showed that almost no mineral synthesis and no As(III) removal were detected in coprecipitated schwertmannite (Co-Sch) system and coprecipitated jarosite (Co-Jar) system at an initial pH of 1.5. The TFe precipitation efficiencies and As(III) removal efficiencies increased considerably and morphologies of Co-Sch and Co-Jar improved significantly when the initial pH value increased from 2.0-2.5. The maximum TFe precipitation efficiency and As(III) removal efficiency reached 30.8% and 89.6%, respectively, for the Co-Sch system, and were 47.5% and 37.4%, respectively, for the Co-Jar system. The overall results show that pH significantly affects the formation of Co-Sch and Co-Jar and the behaviour of As(III) coprecipitation.

4.
Environ Sci Pollut Res Int ; 31(40): 53074-53089, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39172341

RESUMEN

Herein, we report the efficient photocatalytic degradation of the diclofenac drug using the Zn1-x-yPrxAlyO photocatalyst [x, y] = (0.00, 0.00), (0.03, 0.01), (0.03,0.03) under UV light irradiation. The analysis of the structure reveals that the Pr3+ and Al3+ cations insertion into the ZnO lattice leads to a decrease in the lattice constant (a and c), Zn-O bond length, strain lattice, and crystallite size. These alterations are linked to the high degree of atomic disorder triggered by the dopants, which produce stress and strain in the ZnO structure. The Raman measurements confirmed the structural phase and showed changes in the position and intensity of the E2High mode, associated with oxygen vibrations and material crystallinity. The presence of the dopants reduces the concentration of VZn and VO++ type defects while increasing the levels of VO, VO+, and Oi defects, as observed from the fitting of the Photoluminescence spectra. Furthermore, it was noted that de Pr3+ and Al3+ cations insertion into ZnO increases the optical band gap, which is associated with the Moss-Burstein effect. The micrograph images show that dopants transform the morphology from quasi-spherical particles to irregular cluster structures. The textural analysis indicated that an increase in the concentration of Al3+ in the ZnO lattice led to a higher surface area, likely enhancing photocatalytic activity. The sample containing 3% Pr3+ and 3% Al3+ showed the highest photocatalytic activity and degraded up to 71.42% of diclofenac. In addition, experiments with scavengers revealed that hydroxyl radicals are the main species involved in the drug's photodegradation mechanism. Finally, the Zn1-x-yPrxAlyO compound is highly recyclable and stable.


Asunto(s)
Diclofenaco , Rayos Ultravioleta , Diclofenaco/química , Catálisis , Óxido de Zinc/química , Zinc/química , Fotólisis
5.
Nanomaterials (Basel) ; 14(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39195377

RESUMEN

Currently, there is an increasing need to find new ways to purify water by eliminating bacterial biofilms, textile dyes, and toxic water pollutants. These contaminants pose significant risks to both human health and the environment. To address this issue, in this study, we have developed an eco-friendly approach that involves synthesizing a cobalt-doped cerium iron oxide (CCIO) nanocomposite (NC) using an aqueous extract of Gossypium arboreum L. stalks. The resulting nanoparticles can be used to effectively purify water and tackle the challenges associated with these harmful pollutants. Nanoparticles excel in water pollutant removal by providing a high surface area for efficient adsorption, versatile design for the simultaneous removal of multiple contaminants, catalytic properties for organic pollutant degradation, and magnetic features for easy separation, offering cost-effective and sustainable water treatment solutions. A CCIO nanocomposite was synthesized via a green co-precipitation method utilizing biomolecules and co-enzymes extracted from the aqueous solution of Gossypium arboreum L. stalk. This single-step synthesis process was accomplished within a 5-h reaction period. Furthermore, the synthesis of nanocomposites was confirmed by various characterization techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and energy dispersive X-ray (EDX) technology. CCIO NCs were discovered to have a spherical shape and an average size of 40 nm. Based on DLS zeta potential analysis, CCIO NCs were found to be anionic. CCIO NCs also showed significant antimicrobial and antioxidant activity. Overall, considering their physical and chemical properties, the application of CCIO NCs for the adsorption of various dyes (~91%) and water pollutants (chromium = ~60%) has been considered here since they exhibit great adsorption capacity owing to their microporous structure, and represent a step forward in water purification.

6.
Molecules ; 29(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125112

RESUMEN

The physicochemical properties of natural bentonite and its sorbents were studied. It has been established the modification of natural bentonites using polyhydroxoxides of iron (III) (mod.1_Fe_5-c) and aluminum (III) (mod.1_Al_5-c) by the "co-precipitation" method led to changes in their chemical composition, structure, and sorption properties. It was shown that modified sorbents based on natural bentonite are finely porous (nanostructured) objects with a predominance of pores of 1.5-8.0 nm in size. The modification of bentonite with iron (III) and aluminum compounds by the "co-precipitation" method also leads to an increase in the sorption capacity of the obtained sorbents with respect to bichromate and arsenate anions. A kinetic analysis showed that, at the initial stage, the sorption process was controlled by an external diffusion factor, that is, the diffusion of the sorbent from the solution to the liquid film on the surface of the sorbent. The sorption process then began to proceed in a mixed diffusion mode when it limited both the external diffusion factor and the intra-diffusion factor (diffusion of the sorbent to the active centers through the system of pores and capillaries). To clarify the contribution of the chemical stage to the rate of adsorption of bichromate and arsenate anions by the sorbents under study, kinetic curves were processed using equations of chemical kinetics (pseudo-first-order, pseudo-second-order, and Elovich models). It was found that the adsorption of the studied anions by the modified sorbents based on natural bentonite was best described by a pseudo-second-order kinetic model. The high value of the correlation coefficient for the Elovich model (R2 > 0.9) allows us to conclude that there are structural disorders in the porous system of the studied sorbents, and their surfaces can be considered heterogeneous. Considering that heterogeneous processes occur on the surface of the sorbent, it is natural that all surface properties (structure, chemical composition of the surface layer, etc.) play an important role in anion adsorption.

7.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124887

RESUMEN

This article presents a new method for preparing multifunctional composite biomaterials with applications in advanced biomedical fields. The biomaterials consist of dicalcium phosphate (DCPD) and bioactive silicate glasses (SiO2/Na2O and SiO2/K2O), containing the antibiotic streptomycin sulfate. Materials were deeply characterized by X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy, and zeta potential analysis, UV-visible spectrophotometry, and ion-exchange measurement were applied in a simulating body fluid (SBF) solution. The main results include an in situ chemical transformation of dicalcium phosphate into an apatitic phase under the influence of silicate solutions and the incorporation of the antibiotic. The zeta potential showed a decrease in surface charge from ζ = -24.6 mV to ζ = -16.5 mV. In addition, a controlled and prolonged release of antibiotics was observed over a period of 37 days, with a released concentration of up to 755 ppm. Toxicity tests in mice demonstrated good tolerance of the biomaterials, with no significant adverse effects. Moreover, these biomaterials have shown potent antibacterial activity against various bacterial strains, including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, suggesting their potential use in tissue engineering, drug delivery, and orthopedic and dental implants. By integrating the antibiotic into the biomaterial composites, we achieved controlled release and prolonged antibacterial efficacy. This research contributes to advancing biomaterials by exploring innovative synthetic routes and showcasing their promise in regenerative medicine and controlled drug delivery.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Medicina Regenerativa , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Medicina Regenerativa/métodos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Animales , Ratones , Sistemas de Liberación de Medicamentos , Difracción de Rayos X , Pruebas de Sensibilidad Microbiana , Preparaciones de Acción Retardada/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Fosfatos de Calcio/química , Fosfatos de Calcio/síntesis química , Liberación de Fármacos , Estreptomicina/farmacología , Dióxido de Silicio/química
8.
Heliyon ; 10(15): e35725, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170244

RESUMEN

The development of nanotechnology has significantly impacted the improvement of photocatalytic performance of ZnO NPs. In this study synthesis of pure ZnO and Ag-ZnO nanoparticles via a co-precipitation method at varying Ag concentrations (1 %, 2 %, 3 %, 4 % and 6 %) to enhance their photo catalytic efficacy. X-ray diffraction (XRD) analysis estimates crystallite size which decreased by increasing Ag concentration, ranging from 30.6 nm (Pure ZnO) to 22.5 nm 6 % Ag-doped ZnO. Scanning electron microscopy (SEM) revealed decrease in particle size with increasing Ag content. UV-Vis spectroscopy indicating a narrowed band gap of optimal sample. Photocatalytic activity of the synthesized nanoparticles was evaluated using methylene orange (MO) dye degradation under light irradiation. The MO concentration exhibited a decrease with increasing irradiation time in the presence of photocatalysts. Recombination rate of NPs decreases by increasing the concentration of Ag i.e. 4%Ag dope ZnO NPs have lowest recombination rate and maximum degradation efficiency. FTIR analysis confirms the preparation of Ag-doped ZnO NPs. This improvement can be credited to the synergistic effect of Ag doping, leading to a narrowed band gap and potentially maximum degradation of MO by using Ag-doped ZnO NPs.

9.
Sci Total Environ ; 948: 174895, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032740

RESUMEN

Rare Earth Elements (REE) are present in acid mine drainage (AMD) in micromolar concentrations and AMD discharge may lead to an environmental risk. Alkaline Passive Treatment Systems (PTS) are often used to treat AMD and trap toxic trace elements. This study was set up to identify mechanisms by which REE are trapped in or on secondary phases formed in a PTS. Batch alkalinization experiments were performed to simulate PTS by sequentially increasing the pH of AMD collected from the Tharsis mining area inside the Iberian Pyrite Belt and synthetic AMD water samples via CaCO3 addition. The solids that precipitated up to pH ~4 and between pH 4-6 were collected and characterized by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in combination with Scanning Electron Microscope/Energy Dispersive X-ray spectroscopy (SEM/EDX) and synchrotron-based X-ray Absorption Spectroscopy (XAS) and synchrotron-based Micro-X-ray Fluorescence (µ-XRF). Results reveal that REE are mostly scavenged between pH 4-6 in association with Al and Fe phases, whereas a smaller fraction is scavenged at pH ~4 by association with gypsum. Synchrotron-based analysis evidences the incorporation of La3+ into the gypsum structure by substituting Ca2+, indicating a co-precipitation mechanism with gypsum occurring mainly at low pH. Results from parallel adsorption and co-precipitation tests suggest that the REE scavenging between pH 4-6 could be due to a combination of adsorption and co-precipitation on Al(OH)3 and ferrihydrite. This implies that in PTS, REE would be mainly found in Al- (and Fe-) oxyhydroxides occurring in deeper layers of the PTS, i.e., where higher pH-values occur, though a small fraction, especially the light REE, could also be found incorporated into gypsum in the upper layers.

10.
J Environ Manage ; 365: 121300, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955041

RESUMEN

Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ±â€¯0.11% and increased the carbonate bound fraction to 26.1 ±â€¯1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.


Asunto(s)
Arthrobacter , Carbonatos , Cromo , Arthrobacter/metabolismo , Cromo/química , Carbonatos/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química , Carbonato de Calcio/química
11.
Heliyon ; 10(13): e33789, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040388

RESUMEN

This study aims to enhance the stability and effectiveness of heterogeneous catalysts in Fenton-like reactions, explicitly addressing the acidity limitations inherent in traditional Fenton processes. Copper-iron was synthesized through co-precipitation, and a catalyst bead was produced from hydrogel formation. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirm phases in the bimetallic Copper-iron, aligning with the intended composition. Modification with alginate led to reduced metal leaching compared to the bare bimetallic counterpart, as confirmed by atomic absorption spectroscopy (AAS). Additionally, Fourier-transform infrared spectroscopy (FTIR) revealed the deactivation of alginate through the disappearance of carboxyl groups, indicating the depolymerization of the catalyst bead. Under the suggested conditions (Methyl Orange concentration of 25 mg/L, initial solution pH of 7, 2 g/L catalyst loading, concentration of hydrogen peroxide 100 mM in a 120-min reaction time), the catalyst demonstrated remarkable decolorization efficiency of Methyl Orange, achieving 97.67 %. Further highlighting its practicality, the catalyst exhibited outstanding reusability over four cycles under identical conditions, showcasing robust immobilization capabilities and sustained performance. Notably, the catalyst's magnetic properties facilitated easy separation using an external magnet. In conclusion, the developed catalyst beads offer a solution with high reusability, magnetic separability, and reduced iron leaching. The advantageous characteristics underscore its potential as a heterogeneous catalyst for wastewater treatment applications, warranting further exploration under practical conditions.

12.
Molecules ; 29(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064929

RESUMEN

Indomethacin (INDO) has a mechanism of action based on inhibiting fatty acids cyclooxygenase activity within the inflammation process. The action mechanism could be correlated with possible anticancer activity, but its high toxicity in normal tissues has made therapy difficult. By the coprecipitation method, the drug carried in a layered double hydroxides (LDH) hybrid matrix would reduce its undesired effects by promoting chemotherapeutic redirection. Therefore, different samples containing INDO intercalated in LDH were synthesized at temperatures of 50, 70, and 90 °C and synthesis times of 8, 16, 24, and 48 h, seeking the best structural organization. X-ray diffraction (XRD), vibrational Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), spectrophotometric analysis in UV-VIS, and differential thermogravimetric analysis (TGA/DTA) were used for characterization. Our results indicate that higher temperatures and longer synthesis time through coprecipitation reduce the possibility of INDO intercalation. However, it was possible to establish a time of 16 h and a temperature of 50 °C as the best conditions for intercalation. In vitro results confirmed the cell viability potential and anticancer activity in the LDH-INDO sample (16 h and 50 °C) for gastric cancer (AGP01, ACP02, and ACP03), breast cancer (MDA-MB-231 and MCF-7), melanoma (SK-MEL-19), lung fibroblast (MRC-5), and non-neoplastic gastric tissue (MN01) by MTT assay. Cell proliferation was inhibited, demonstrating higher and lower toxicity against MDA-MB-231 and SK-MEL-19. Thus, a clinical redirection of INDO is suggested as an integral and adjunctive anticancer medication in chemotherapy treatment.


Asunto(s)
Antineoplásicos , Hidróxidos , Indometacina , Nanopartículas , Humanos , Nanopartículas/química , Indometacina/farmacología , Indometacina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Hidróxidos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proliferación Celular/efectos de los fármacos
13.
Ecotoxicol Environ Saf ; 281: 116631, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941658

RESUMEN

The contamination of arsenic (As) in aqueous environments has drawn widespread attention, and iron compounds may largely alter the migration ability of As. However, the stability of As(III) in Fe-As system with the intervention of organic matter (OM) remains unclear. Herein, we had explored the co-precipitation and co-oxidation processes of As-Fe system by using batch experiments combined with Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) in this research. The precipitation quantity of As(III) increased (28.85-92.41 %) when the As/Fe ratio decreased, and increased (24.20-64.20 %) with pH increased. The main active substance for oxidizing As(III) was H2O2, which was produced in the As-Fe system. FTIR and XPS revealed that As(III) was first oxidized in neutral, and then absorbed and enteredthe interior of Fe(OH)3 colloids. But under alkaline conditions, As(III) was adsorbed by Fe (Oxyhydr) oxides firstly, and then oxidized. The intervention of OM would inhibit the redistribution process of As(III) in aqueous environments. Functional groups and unsaturation of the carbon chain were the dominant factors that affected the precipitation and oxidation processes of As(III), respectively. Co-existing ions (especially PO43-) also signally affected the precipitation quantity of As(Ⅲ) in the system and, when coexisting with OM, could exacerbate this process. The influence of co-existing ions on the redistributive process of As(III) in the As-Fe system with/without OM were as follows: PO43- > SO42- > mixed ions > SiO32-. Moreover, high concentration of OM and PO43- might lead to morphological alterations of As, acting as a threat to aqueous environments. In summary, the present findings were to further understand and appreciate the changes of As toxicity in the aqueous environments. Particularly, the coexistence of OM and As can potentially increase the risk to drinking water safety.


Asunto(s)
Arsénico , Hierro , Oxidación-Reducción , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Arsénico/química , Espectroscopía Infrarroja por Transformada de Fourier , Hierro/química , Peróxido de Hidrógeno/química , Precipitación Química , Concentración de Iones de Hidrógeno , Espectroscopía de Fotoelectrones , Compuestos Férricos/química , Adsorción
14.
Environ Sci Pollut Res Int ; 31(30): 42574-42592, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38890252

RESUMEN

Arsenic poisoning of groundwater is one of the most critical environmental hazards on Earth. Therefore, the practical and proper treatment of arsenic in water requires more attention to ensure safe drinking water. The World Health Organization (WHO) sets guidelines for 10 µg/L of arsenic in drinking water, and direct long-term exposure to arsenic in drinking water beyond this value causes severe health hazards to individuals. Numerous studies have confirmed the adverse effects of arsenic after long-term consumption of arsenic-contaminated water. Here, technologies for the remediation of arsenic from water are highlighted for the purpose of understanding the need for a single-point solution for the treatment of As(III)-contaminated water. As(III) species are neutral at neutral pH; the solution requires transformation technology for its complete removal. In this critical review, emphasis was placed on single-step technologies with multiple functions to remediate arsenic from water.


Asunto(s)
Arsénico , Oxidación-Reducción , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Arsénico/química , Purificación del Agua/métodos , Agua Subterránea/química , Arsenitos/química , Agua Potable/química , Adsorción
15.
Nanomaterials (Basel) ; 14(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921891

RESUMEN

Ultra-small magnetic Fe3O4 nanoparticles are successfully synthesized in basic solutions by using the radiolytic method of the partial reduction in FeIII in the presence of poly-acrylate (PA), or by using the coprecipitation method of FeIII and FeII salts in the presence of PA. The optical, structural, and magnetic properties of the nanoparticles were examined using UV-Vis absorption spectroscopy, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and SQUID magnetization measurements. The HRTEM and XRD analysis confirmed the formation of ultra-small magnetite nanoparticles in a spinel structure, with a smaller size for radiation-induced particles coated by PA (5.2 nm) than for coprecipitated PA-coated nanoparticles (11 nm). From magnetization measurements, it is shown that the nanoparticles are superparamagnetic at room temperature. The magnetization saturation value Ms = 50.1 A m2 kg-1 of radiation-induced nanoparticles at 60 kGy is higher than Ms = 18.2 A m2 kg-1 for coprecipitated nanoparticles. Both values are compared with nanoparticles coated with other stabilizers in the literature.

16.
J Fluoresc ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888658

RESUMEN

Metal nanoparticles and their binary oxides are well-known for their interactions with biomolecules and their applications in the biomedical field. However, the potential of ternary oxide nanophosphors remains underexplored in these fields due to challenges associated with high-temperature synthesis procedures and the use of toxic chemicals. ZnAl2O4, a ternary oxide matrix, being recognized for its adjustable wide bandgap, impressive surface properties, mechanical strength, thermal stability, and high quantum yield, is chosen for the present work. This study aims to comprehensively investigate the structural, morphological, optical, and cytotoxic properties of zinc aluminate nano phosphors synthesized through a co-precipitation method followed by low-temperature calcination. Analysis using X-ray diffraction spectroscopy (XRD) and Fourier-transform infrared spectroscopy (FTIR) revealed that the formation of the ZnAl2O4 spinel phase initiates at 300 °C and completes at 750 °C.SEM-EDAX measurements provided further confirmation of the compositional integrity of the synthesized sample. The average crystallite size, determined to be 11.47 nm through a W-H plot, along with a higher bandgap value of 4.49 eV compared to bulk ZnAl2O4 from the diffuse reflectance spectra (DRS), attests to the success of the nanophosphor synthesis. The self-activated blue luminescent centers of ZnAl2O4 can be fine-tuned to emit light in the green and red regions of the electromagnetic spectrum through appropriate rare earth (RE) doping, utilizing Tb3+ and Eu3+ respectively. Furthermore, the particles underwent short-term in-vitro cytotoxicity testing using Dalton's Lymphoma Ascites cells (DLA) and normal cells, demonstrating high activity against DLA cells while maintaining compatibility with normal cells.

17.
Polymers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891458

RESUMEN

A challenge in tissue engineering and the pharmaceutical sector is the development of controlled local release of drugs that raise issues when systemic administration is applied. Strontium is an example of an effective anti-osteoporotic agent, used in treating osteoporosis due to both anti-resorptive and anabolic mechanisms of action. Designing bone scaffolds with a higher capability of promoting bone regeneration is a topical research subject. In this study, we developed composite multi-layer three-dimensional (3D) scaffolds for bone tissue engineering based on nano-hydroxyapatite (HA), Sr-containing nano-hydroxyapatite (SrHA), and poly-ε-caprolactone (PCL) through the material extrusion fabrication technique. Previously obtained HA and SrHA with various Sr content were used for the composite material. The chemical, morphological, and biocompatibility properties of the 3D-printed scaffolds obtained using HA/SrHA and PCL were investigated. The 3D composite scaffolds showed good cytocompatibility and osteogenic potential, which is specifically recommended in applications when faster mineralization is needed, such as osteoporosis treatment.

18.
Adv Sci (Weinh) ; 11(26): e2309291, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704699

RESUMEN

Oxides are of interest for thermoelectrics due to their high thermal stability, chemical inertness, low cost, and eco-friendly constituting elements. Here, adopting a unique synthesis route via chemical co-precipitation at strongly alkaline conditions, one of the highest thermoelectric performances for ZnO ceramics ( P F max = $PF_{\text{max}} =$  21.5 µW cm-1 K-2 and z T max = $zT_{\text{max}} =$  0.5 at 1100 K in Zn 0.96 Al 0.04 O ${\rm Zn}_{0.96} {\rm Al}_{0.04}{\rm O}$ ) is achieved. These results are linked to a distinct modification of the electronic structure: charge carriers become trapped at the edge of the conduction band due to Anderson localization, evidenced by an anomalously low carrier mobility, and characteristic temperature and doping dependencies of charge transport. The bi-dimensional optimization of doping and carrier localization enable a simultaneous improvement of the Seebeck coefficient and electrical conductivity, opening a novel pathway to advance ZnO thermoelectrics.

19.
J Hazard Mater ; 472: 134430, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718502

RESUMEN

Electrolytic manganese residue (EMR), a solid waste generated during electrolytic manganese production, exhibits substantial leaching toxicity owing to its elevated levels of soluble Mn2+ and NH4+. The leaching and recovery of valuable metal ions and NH4+ from EMR are key to the hazard-free treatment and resource utilization of EMR. In this study, two-stage countercurrent leaching with water was used to leach Mn2+, Mg2+, and NH4+ from EMR. Subsequently, two-stage countercurrent extraction was conducted using α-hydroxy-2-ethylhexyl phosphinic acid (α-H-2-EHA) as an extractant to enrich Mn2+, and Mg2+, and NH4+ were recovered via coprecipitation. Based on the calculations for a single leaching-extraction process, the recoveries of Mn2+, Mg2+, and NH4+ ions exceeded 80%, 99%, and 90%, respectively. In addition, high-purity Mn3O4 with an Mn content of 71.61% and struvite were produced. This process represents a win-win strategy that facilitates the hazard-free treatment of EMR while simultaneously recovering valuable Mn2+, Mg2+, and NH4+ resources from waste. Thus, this study provides a novel approach to the hazard-free and resourceful management of solid waste. ENVIRONMENTAL IMPLICATION: Electrolytic manganese residue (EMR), a solid waste generated during electrolytic manganese production, poses significant environmental risks due to its soluble heavy metals and ammonia nitrogen content. Efforts have been made to address this issue, but there has been no mature industrial application due to cost or processing capacity constraints. In this work, solvent extraction was first used to enrich Mn2+ from EMR leachate, and a novel α­hydroxy­2­ethylhexyl phosphinic acid was used as extractant. High purity Mn3O4 and struvite was synthesized through this process. The win­win strategy offers a novel approach for the hazard­free and resourceful utilization of solid waste.

20.
Int J Biol Macromol ; 270(Pt 1): 132382, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754652

RESUMEN

Listeria monocytogenes (L. monocytogenes) and Staphylococcus aureus (S. aureus) are widely acknowledged as two of the most dangerous foodborne pathogens. Nevertheless, reports on the development of non-toxic food preservatives that specifically target these two bacterial strains are scarce. Here, we present an inclusion complex (IC) of Hinoki essential oil with ß-cyclodextrin, which exhibited dual anti-L. monocytogenes and anti-S. aureus activities. For the first time, an innovative ultrasound-aided co-precipitation technique was utilized for the preparation of IC. Compared with the traditional co-precipitation method, this new technique demonstrated superior encapsulation and time efficiencies, making it well-suited for large-scale production. X-ray diffraction and scanning electron microscopy analyses revealed a transition in the morphological and crystal structures after formation of the IC. Fourier transform infrared spectroscopy and Raman spectroscopy analyses indicated that Hinoki essential oil was effectively encapsulated by ß-cyclodextrin. The differential scanning calorimetry and thermogravimetric thermograms indicated that the formed IC was more thermally stable than the free Hinoki essential oil. Importantly, 100 % antibacterial ratios for both L. monocytogenes and S. aureus were determined, indicating that the IC prepared in this study is a promising food preservative.


Asunto(s)
Antibacterianos , Listeria monocytogenes , Aceites Volátiles , Staphylococcus aureus , beta-Ciclodextrinas , Listeria monocytogenes/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , beta-Ciclodextrinas/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Ondas Ultrasónicas , Granada (Fruta)/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA