Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
MethodsX ; 13: 102901, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39247156

RESUMEN

Interaction and communication for normal human beings are easier than for a person with disabilities like speaking and hearing who may face communication problems with other people. Sign Language helps reduce this communication gap between a normal and disabled person. The prior solutions proposed using several deep learning techniques, such as Convolutional Neural Networks, Support Vector Machines, and K-Nearest Neighbors, have either demonstrated low accuracy or have not been implemented as real-time working systems. This system addresses both issues effectively. This work extends the difficulties faced while classifying the characters in Indian Sign Language(ISL). It can identify a total of 23 hand poses of the ISL. The system uses a pre-trained VGG16 Convolution Neural Network(CNN) with an attention mechanism. The model's training uses the Adam optimizer and cross-entropy loss function. The results demonstrate the effectiveness of transfer learning for ISL classification, achieving an accuracy of 97.5 % with VGG16 and 99.8 % with VGG16 plus attention mechanism.•Enabling quick and accurate sign language recognition with the help of trained model VGG16 with an attention mechanism.•The system does not require any external gloves or sensors, which helps to eliminate the need for physical sensors while simplifying the process with reduced costs.•Real-time processing makes the system more helpful for people with speaking and hearing disabilities, making it easier for them to communicate with other humans.

2.
Diagnostics (Basel) ; 14(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272624

RESUMEN

The application of artificial intelligence (AI) in electrocardiography is revolutionizing cardiology and providing essential insights into the consequences of the COVID-19 pandemic. This comprehensive review explores AI-enhanced ECG (AI-ECG) applications in risk prediction and diagnosis of heart diseases, with a dedicated chapter on COVID-19-related complications. Introductory concepts on AI and machine learning (ML) are explained to provide a foundational understanding for those seeking knowledge, supported by examples from the literature and current practices. We analyze AI and ML methods for arrhythmias, heart failure, pulmonary hypertension, mortality prediction, cardiomyopathy, mitral regurgitation, hypertension, pulmonary embolism, and myocardial infarction, comparing their effectiveness from both medical and AI perspectives. Special emphasis is placed on AI applications in COVID-19 and cardiology, including detailed comparisons of different methods, identifying the most suitable AI approaches for specific medical applications and analyzing their strengths, weaknesses, accuracy, clinical relevance, and key findings. Additionally, we explore AI's role in the emerging field of cardio-oncology, particularly in managing chemotherapy-induced cardiotoxicity and detecting cardiac masses. This comprehensive review serves as both an insightful guide and a call to action for further research and collaboration in the integration of AI in cardiology, aiming to enhance precision medicine and optimize clinical decision-making.

3.
J Stomatol Oral Maxillofac Surg ; : 102048, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244033

RESUMEN

INTRODUCTION: In orthodontic treatments, accurately assessing the upper airway volume and morphology is essential for proper diagnosis and planning. Cone beam computed tomography (CBCT) is used for assessing upper airway volume through manual, semi-automatic, and automatic airway segmentation methods. This study evaluates upper airway segmentation accuracy by comparing the results of an automatic model and a semi-automatic method against the gold standard manual method. MATERIALS AND METHODS: An automatic segmentation model was trained using the MONAI Label framework to segment the upper airway from CBCT images. An open-source program, ITK-SNAP, was used for semi-automatic segmentation. The accuracy of both methods was evaluated against manual segmentations. Evaluation metrics included Dice Similarity Coefficient (DSC), Precision, Recall, 95% Hausdorff Distance (HD), and volumetric differences. RESULTS: The automatic segmentation group averaged a DSC score of 0.915±0.041, while the semi-automatic group scored 0.940±0.021, indicating clinically acceptable accuracy for both methods. Analysis of the 95% HD revealed that semi-automatic segmentation (0.997±0.585) was more accurate and closer to manual segmentation than automatic segmentation (1.447±0.674). Volumetric comparisons revealed no statistically significant differences between automatic and manual segmentation for total, oropharyngeal, and velopharyngeal airway volumes. Similarly, no significant differences were noted between the semi-automatic and manual methods across these regions. CONCLUSION: It has been observed that both automatic and semi-automatic methods, which utilise open-source software, align effectively with manual segmentation. Implementing these methods can aid in decision-making by allowing faster and easier upper airway segmentation with comparable accuracy in orthodontic practice.

4.
Front Vet Sci ; 11: 1436795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086767

RESUMEN

Facial expressions are essential for communication and emotional expression across species. Despite the improvements brought by tools like the Horse Grimace Scale (HGS) in pain recognition in horses, their reliance on human identification of characteristic traits presents drawbacks such as subjectivity, training requirements, costs, and potential bias. Despite these challenges, the development of facial expression pain scales for animals has been making strides. To address these limitations, Automated Pain Recognition (APR) powered by Artificial Intelligence (AI) offers a promising advancement. Notably, computer vision and machine learning have revolutionized our approach to identifying and addressing pain in non-verbal patients, including animals, with profound implications for both veterinary medicine and animal welfare. By leveraging the capabilities of AI algorithms, we can construct sophisticated models capable of analyzing diverse data inputs, encompassing not only facial expressions but also body language, vocalizations, and physiological signals, to provide precise and objective evaluations of an animal's pain levels. While the advancement of APR holds great promise for improving animal welfare by enabling better pain management, it also brings forth the need to overcome data limitations, ensure ethical practices, and develop robust ground truth measures. This narrative review aimed to provide a comprehensive overview, tracing the journey from the initial application of facial expression recognition for the development of pain scales in animals to the recent application, evolution, and limitations of APR, thereby contributing to understanding this rapidly evolving field.

5.
Diagnostics (Basel) ; 14(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125567

RESUMEN

Breast cancer is a prevalent malignancy characterized by the uncontrolled growth of glandular epithelial cells, which can metastasize through the blood and lymphatic systems. Microcalcifications, small calcium deposits within breast tissue, are critical markers for early detection of breast cancer, especially in non-palpable carcinomas. These microcalcifications, appearing as small white spots on mammograms, are challenging to identify due to potential confusion with other tissues. This study hypothesizes that a hybrid feature extraction approach combined with Convolutional Neural Networks (CNNs) can significantly enhance the detection and localization of microcalcifications in mammograms. The proposed algorithm employs Gabor, Prewitt, and Gray Level Co-occurrence Matrix (GLCM) kernels for feature extraction. These features are input to a CNN architecture designed with maxpooling layers, Rectified Linear Unit (ReLU) activation functions, and a sigmoid response for binary classification. Additionally, the Top Hat filter is used for precise localization of microcalcifications. The preprocessing stage includes enhancing contrast using the Volume of Interest Look-Up Table (VOI LUT) technique and segmenting regions of interest. The CNN architecture comprises three convolutional layers, three ReLU layers, and three maxpooling layers. The training was conducted using a balanced dataset of digital mammograms, with the Adam optimizer and binary cross-entropy loss function. Our method achieved an accuracy of 89.56%, a sensitivity of 82.14%, and a specificity of 91.47%, outperforming related works, which typically report accuracies around 85-87% and sensitivities between 76 and 81%. These results underscore the potential of combining traditional feature extraction techniques with deep learning models to improve the detection and localization of microcalcifications. This system may serve as an auxiliary tool for radiologists, enhancing early detection capabilities and potentially reducing diagnostic errors in mass screening programs.

6.
Diagnostics (Basel) ; 14(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39202188

RESUMEN

The class activation map (CAM) represents the neural-network-derived region of interest, which can help clarify the mechanism of the convolutional neural network's determination of any class of interest. In medical imaging, it can help medical practitioners diagnose diseases like COVID-19 or pneumonia by highlighting the suspicious regions in Computational Tomography (CT) or chest X-ray (CXR) film. Many contemporary deep learning techniques only focus on COVID-19 classification tasks using CXRs, while few attempt to make it explainable with a saliency map. To fill this research gap, we first propose a VGG-16-architecture-based deep learning approach in combination with image enhancement, segmentation-based region of interest (ROI) cropping, and data augmentation steps to enhance classification accuracy. Later, a multi-layer Gradient CAM (ML-Grad-CAM) algorithm is integrated to generate a class-specific saliency map for improved visualization in CXR images. We also define and calculate a Severity Assessment Index (SAI) from the saliency map to quantitatively measure infection severity. The trained model achieved an accuracy score of 96.44% for the three-class CXR classification task, i.e., COVID-19, pneumonia, and normal (healthy patients), outperforming many existing techniques in the literature. The saliency maps generated from the proposed ML-GRAD-CAM algorithm are compared with the original Gran-CAM algorithm.

7.
BioData Min ; 17(1): 27, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198921

RESUMEN

Cardiovascular diseases are the main cause of death in the world and cardiovascular imaging techniques are the mainstay of noninvasive diagnosis. Aortic stenosis is a lethal cardiac disease preceded by aortic valve calcification for several years. Data-driven tools developed with Deep Learning (DL) algorithms can process and categorize medical images data, providing fast diagnoses with considered reliability, to improve healthcare effectiveness. A systematic review of DL applications on medical images for pathologic calcium detection concluded that there are established techniques in this field, using primarily CT scans, at the expense of radiation exposure. Echocardiography is an unexplored alternative to detect calcium, but still needs technological developments. In this article, a fully automated method based on Convolutional Neural Networks (CNNs) was developed to detect Aortic Calcification in Echocardiography images, consisting of two essential processes: (1) an object detector to locate aortic valve - achieving 95% of precision and 100% of recall; and (2) a classifier to identify calcium structures in the valve - which achieved 92% of precision and 100% of recall. The outcome of this work is the possibility of automation of the detection with Echocardiography of Aortic Valve Calcification, a lethal and prevalent disease.

8.
Sensors (Basel) ; 24(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205129

RESUMEN

Human activity recognition (HAR) is a crucial task in various applications, including healthcare, fitness, and the military. Deep learning models have revolutionized HAR, however, their computational complexity, particularly those involving BiLSTMs, poses significant challenges for deployment on resource-constrained devices like smartphones. While BiLSTMs effectively capture long-term dependencies by processing inputs bidirectionally, their high parameter count and computational demands hinder practical applications in real-time HAR. This study investigates the approximation of the computationally intensive BiLSTM component in a HAR model by using a combination of alternative model components and data flipping augmentation. The proposed modifications to an existing hybrid model architecture replace the BiLSTM with standard and residual LSTM, along with convolutional networks, supplemented by data flipping augmentation to replicate the context awareness typically provided by BiLSTM networks. The results demonstrate that the residual LSTM (ResLSTM) model achieves superior performance while maintaining a lower computational complexity compared to the traditional BiLSTM model. Specifically, on the UCI-HAR dataset, the ResLSTM model attains an accuracy of 96.34% with 576,702 parameters, outperforming the BiLSTM model's accuracy of 95.22% with 849,534 parameters. On the WISDM dataset, the ResLSTM achieves an accuracy of 97.20% with 192,238 parameters, compared to the BiLSTM's 97.23% accuracy with 283,182 parameters, demonstrating a more efficient architecture with minimal performance trade-off. For the KU-HAR dataset, the ResLSTM model achieves an accuracy of 97.05% with 386,038 parameters, showing comparable performance to the BiLSTM model's 98.63% accuracy with 569,462 parameters, but with significantly fewer parameters.


Asunto(s)
Aprendizaje Profundo , Actividades Humanas , Humanos , Redes Neurales de la Computación , Algoritmos , Teléfono Inteligente
9.
J Imaging ; 10(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39194972

RESUMEN

Agriculture plays a vital role in Bangladesh's economy. It is essential to ensure the proper growth and health of crops for the development of the agricultural sector. In the context of Bangladesh, crop diseases pose a significant threat to agricultural output and, consequently, food security. This necessitates the timely and precise identification of such diseases to ensure the sustainability of food production. This study focuses on building a hybrid deep learning model for the identification of three specific diseases affecting three major crops: late blight in potatoes, brown spot in rice, and common rust in corn. The proposed model leverages EfficientNetB0's feature extraction capabilities, known for achieving rapid high learning rates, coupled with the classification proficiency of SVMs, a well-established machine learning algorithm. This unified approach streamlines data processing and feature extraction, potentially improving model generalizability across diverse crops and diseases. It also aims to address the challenges of computational efficiency and accuracy that are often encountered in precision agriculture applications. The proposed hybrid model achieved 97.29% accuracy. A comparative analysis with other models, CNN, VGG16, ResNet50, Xception, Mobilenet V2, Autoencoders, Inception v3, and EfficientNetB0 each achieving an accuracy of 86.57%, 83.29%, 68.79%, 94.07%, 90.71%, 87.90%, 94.14%, and 96.14% respectively, demonstrated the superior performance of our proposed model.

10.
Am J Clin Pathol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136261

RESUMEN

OBJECTIVES: This review summarizes the current and potential uses of artificial intelligence (AI) in the current state of clinical microbiology with a focus on replacement of labor-intensive tasks. METHODS: A search was conducted on PubMed using the key terms clinical microbiology and artificial intelligence. Studies were reviewed for relevance to clinical microbiology, current diagnostic techniques, and potential advantages of AI in routine microbiology workflows. RESULTS: Numerous studies highlight potential labor, as well as diagnostic accuracy, benefits to the implementation of AI for slide-based and macroscopic digital image analyses. These range from Gram stain interpretation to categorization and quantitation of culture growth. CONCLUSIONS: Artificial intelligence applications in clinical microbiology significantly enhance diagnostic accuracy and efficiency, offering promising solutions to labor-intensive tasks and staffing shortages. More research efforts and US Food and Drug Administration clearance are still required to fully incorporate these AI applications into routine clinical laboratory practices.

11.
IEEE Trans Hum Mach Syst ; 54(3): 317-324, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974222

RESUMEN

Ultrasound imaging or sonomyography has been found to be a robust modality for measuring muscle activity due to its ability to image deep-seated muscles directly while providing superior spatiotemporal specificity compared to surface electromyography-based techniques. Quantifying the morphological changes during muscle activity involves computationally expensive approaches for tracking muscle anatomical structures or extracting features from brightness-mode (B-mode) images and amplitude-mode (A-mode) signals. This paper uses an offline regression convolutional neural network (CNN) called SonoMyoNet to estimate continuous isometric force from sparse ultrasound scanlines. SonoMyoNet learns features from a few equispaced scanlines selected from B-mode images and utilizes the learned features to estimate continuous isometric force accurately. The performance of SonoMyoNet was evaluated by varying the number of scanlines to simulate the placement of multiple single-element ultrasound transducers in a wearable system. Results showed that SonoMyoNet could accurately predict isometric force with just four scanlines and is immune to speckle noise and shifts in the scanline location. Thus, the proposed network reduces the computational load involved in feature tracking algorithms and estimates muscle force from the global features of sparse ultrasound images.

12.
Animals (Basel) ; 14(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39061490

RESUMEN

Since pig vocalization is an important indicator of monitoring pig conditions, pig vocalization detection and recognition using deep learning play a crucial role in the management and welfare of modern pig livestock farming. However, collecting pig sound data for deep learning model training takes time and effort. Acknowledging the challenges of collecting pig sound data for model training, this study introduces a deep convolutional neural network (DCNN) architecture for pig vocalization and non-vocalization classification with a real pig farm dataset. Various audio feature extraction methods were evaluated individually to compare the performance differences, including Mel-frequency cepstral coefficients (MFCC), Mel-spectrogram, Chroma, and Tonnetz. This study proposes a novel feature extraction method called Mixed-MMCT to improve the classification accuracy by integrating MFCC, Mel-spectrogram, Chroma, and Tonnetz features. These feature extraction methods were applied to extract relevant features from the pig sound dataset for input into a deep learning network. For the experiment, three datasets were collected from three actual pig farms: Nias, Gimje, and Jeongeup. Each dataset consists of 4000 WAV files (2000 pig vocalization and 2000 pig non-vocalization) with a duration of three seconds. Various audio data augmentation techniques are utilized in the training set to improve the model performance and generalization, including pitch-shifting, time-shifting, time-stretching, and background-noising. In this study, the performance of the predictive deep learning model was assessed using the k-fold cross-validation (k = 5) technique on each dataset. By conducting rigorous experiments, Mixed-MMCT showed superior accuracy on Nias, Gimje, and Jeongeup, with rates of 99.50%, 99.56%, and 99.67%, respectively. Robustness experiments were performed to prove the effectiveness of the model by using two farm datasets as a training set and a farm as a testing set. The average performance of the Mixed-MMCT in terms of accuracy, precision, recall, and F1-score reached rates of 95.67%, 96.25%, 95.68%, and 95.96%, respectively. All results demonstrate that the proposed Mixed-MMCT feature extraction method outperforms other methods regarding pig vocalization and non-vocalization classification in real pig livestock farming.

13.
J Oral Biol Craniofac Res ; 14(5): 500-506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050525

RESUMEN

Aim: The aim of the questionnaire study was to determine the knowledge, attitude, and perception of orthodontists regarding the role of artificial intelligence in dentistry in general and orthodontics specifically, and to determine the use of artificial intelligence by the orthodontist. Methods: This cross-sectional study was done among the orthodontists of Northern India (clinicians, academicians, and postgraduates) through a web-based electronic survey using Google Forms. The study was designed to obtain information about AI and its basic usage in daily life, in dentistry, and in orthodontics from the participants. The options given were set specifically according to the Likert scale to maintain the correct format. The questionnaire was validated by one AI expert and one orthodontic expert, followed by pretesting in a smaller group of 25 orthodontists 2 weeks before circulation. A total of 100 orthodontists and postgraduate students responded to the pretested online questionnaire link for 31 questions in four sections sent via social media websites in a period of 3 months. Results: The majority of the participants believe that AI could be useful in diagnosis and treatment planning and could revolutionize dentistry in general. 84 % of the orthodontic academicians and clinicians, including PG students, consider AI a useful tool for boosting performance and delivering quality care in orthodontics, and 72 % see AI as a partner rather than a competitor in the foreseeable future of dentistry. 90 % of the participants believe that the incorporation of AI into CBCT analysis can be a valuable addition to diagnosis and treatment planning. 86 % of total participants agree that AI can be helpful in decision-making for orthognathic surgery, and 84 % find AI useful for bone age assessment. Conclusions: It was observed that academicians are more aware of AI terminologies and usage as compared to PG students and clinicians. There is a consensus that AI is a useful tool for diagnosis and treatment planning, boosting performance and quality care in orthodontics. In spite of these facts, 62.5 % of clinicians and 40 % of PG students are still not using AI for cephalometric analysis (p = 0.033).

14.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000903

RESUMEN

The South-to-North Water Diversion Project in China is an extensive inter-basin water transfer project, for which ensuring the safe operation and maintenance of infrastructure poses a fundamental challenge. In this context, structural health monitoring is crucial for the safe and efficient operation of hydraulic infrastructure. Currently, most health monitoring systems for hydraulic infrastructure rely on commercial software or algorithms that only run on desktop computers. This study developed for the first time a lightweight convolutional neural network (CNN) model specifically for early detection of structural damage in water supply canals and deployed it as a tiny machine learning (TinyML) application on a low-power microcontroller unit (MCU). The model uses damage images of the supply canals that we collected as input and the damage types as output. With data augmentation techniques to enhance the training dataset, the deployed model is only 7.57 KB in size and demonstrates an accuracy of 94.17 ± 1.67% and a precision of 94.47 ± 1.46%, outperforming other commonly used CNN models in terms of performance and energy efficiency. Moreover, each inference consumes only 5610.18 µJ of energy, allowing a standard 225 mAh button cell to run continuously for nearly 11 years and perform approximately 4,945,055 inferences. This research not only confirms the feasibility of deploying real-time supply canal surface condition monitoring on low-power, resource-constrained devices but also provides practical technical solutions for improving infrastructure security.

15.
Sci Rep ; 14(1): 14263, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902287

RESUMEN

Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.


Asunto(s)
Hemólisis , Redes Neurales de la Computación , Péptidos , Hemólisis/efectos de los fármacos , Péptidos/química , Biología Computacional/métodos , Humanos
16.
PET Clin ; 19(4): 543-559, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38944639

RESUMEN

Hematological malignancies exhibit a widespread distribution, necessitating evaluation of disease activity over the entire body. In clinical practice, visual analysis and semiquantitative parameters are used to assess 18F-FDGPET/CT imaging, which solely represents measurements of disease activity from limited area and may not adequately reflect global disease assessment. An efficient method for assessing the global disease burden of hematological malignancies is to employ PET/computed tomography based novel quantitative parameters. In this article, we explored novel quantitative parameters on PET/CT imaging for assessing global disease burden and the potential role of artificial intelligence (AI) to determine these parameters in evaluation of hematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Neoplasias Hematológicas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Inteligencia Artificial , Fluorodesoxiglucosa F18 , Radiofármacos
17.
Skin Res Technol ; 30(6): e13770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881051

RESUMEN

BACKGROUND: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively. AIM: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma. METHOD: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset. RESULTS: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.


Asunto(s)
Aprendizaje Profundo , Dermoscopía , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/diagnóstico por imagen , Melanoma/diagnóstico , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Dermoscopía/métodos , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Genómica/métodos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano
18.
Microsc Microanal ; 30(3): 501-507, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38701183

RESUMEN

Automated image acquisition can significantly improve the throughput of serial section scanning electron microscopy (ssSEM). However, image quality can vary from image to image depending on autofocusing and beam stigmation. Automatically evaluating the quality of images is, therefore, important for efficiently generating high-quality serial section scanning electron microscopy (ssSEM) datasets. We tested several convolutional neural networks for their ability to reproduce user-generated evaluations of ssSEM image quality. We found that a modification of ResNet-50 that we term quality evaluation Network (QEN) reliably predicts user-generated quality scores. Running QEN in parallel to ssSEM image acquisition therefore allows users to quickly identify imaging problems and flag images for retaking. We have publicly shared the Python code for evaluating images with QEN, the code for training QEN, and the training dataset.

19.
Bioengineering (Basel) ; 11(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38790370

RESUMEN

Nasopharyngeal carcinoma is a significant health challenge that is particularly prevalent in Southeast Asia and North Africa. MRI is the preferred diagnostic tool for NPC due to its superior soft tissue contrast. The accurate segmentation of NPC in MRI is crucial for effective treatment planning and prognosis. We conducted a search across PubMed, Embase, and Web of Science from inception up to 20 March 2024, adhering to the PRISMA 2020 guidelines. Eligibility criteria focused on studies utilizing DL for NPC segmentation in adults via MRI. Data extraction and meta-analysis were conducted to evaluate the performance of DL models, primarily measured by Dice scores. We assessed methodological quality using the CLAIM and QUADAS-2 tools, and statistical analysis was performed using random effects models. The analysis incorporated 17 studies, demonstrating a pooled Dice score of 78% for DL models (95% confidence interval: 74% to 83%), indicating a moderate to high segmentation accuracy by DL models. Significant heterogeneity and publication bias were observed among the included studies. Our findings reveal that DL models, particularly convolutional neural networks, offer moderately accurate NPC segmentation in MRI. This advancement holds the potential for enhancing NPC management, necessitating further research toward integration into clinical practice.

20.
Quant Imaging Med Surg ; 14(5): 3501-3518, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38720828

RESUMEN

Background: In the field of medical imaging, the rapid rise of convolutional neural networks (CNNs) has presented significant opportunities for conserving healthcare resources. However, with the wide spread application of CNNs, several challenges have emerged, such as enormous data annotation costs, difficulties in ensuring user privacy and security, weak model interpretability, and the consumption of substantial computational resources. The fundamental challenge lies in optimizing and seamlessly integrating CNN technology to enhance the precision and efficiency of medical diagnosis. Methods: This study sought to provide a comprehensive bibliometric overview of current research on the application of CNNs in medical imaging. Initially, bibliometric methods were used to calculate the frequency statistics, and perform the cluster analysis and the co-citation analysis of countries, institutions, authors, keywords, and references. Subsequently, the latent Dirichlet allocation (LDA) method was employed for the topic modeling of the literature. Next, an in-depth analysis of the topics was conducted, and the topics in the medical field, technical aspects, and trends in topic evolution were summarized. Finally, by integrating the bibliometrics and LDA results, the developmental trajectory, milestones, and future directions in this field were outlined. Results: A data set containing 6,310 articles in this field published from January 2013 to December 2023 was complied. With a total of 55,538 articles, the United States led in terms of the citation count, while in terms of the publication volume, China led with 2,385 articles. Harvard University emerged as the most influential institution, boasting an average of 69.92 citations per article. Within the realm of CNNs, residual neural network (ResNet) and U-Net stood out, receiving 1,602 and 1,419 citations, respectively, which highlights the significant attention these models have received. The impact of coronavirus disease 2019 (COVID-19) was unmistakable, as reflected by the publication of 597 articles, making it a focal point of research. Additionally, among various disease topics, with 290 articles, brain-related research was the most prevalent. Computed tomography (CT) imaging dominated the research landscape, representing 73% of the 30 different topics. Conclusions: Over the past 11 years, CNN-related research in medical imaging has grown exponentially. The findings of the present study provide insights into the field's status and research hotspots. In addition, this article meticulously chronicled the development of CNNs and highlighted key milestones, starting with LeNet in 1989, followed by a challenging 20-year exploration period, and culminating in the breakthrough moment with AlexNet in 2012. Finally, this article explored recent advancements in CNN technology, including semi-supervised learning, efficient learning, trustworthy artificial intelligence (AI), and federated learning methods, and also addressed challenges related to data annotation costs, diagnostic efficiency, model performance, and data privacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA