Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.920
Filtrar
1.
Chemosphere ; 364: 143243, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233295

RESUMEN

Phthalic acid esters (PAE) are widely used as plasticizers and have been classified as ubiquitous environmental contaminants of primary concern. PAE have accumulated intensively in surface water, groundwater, and wastewaters; thus, PAE degradation is essential. In the present study, the ability of a saline soil bacteria (SSB)-consortium to degrade synthetic wastewater-phthalates with alkyl chains of different lengths, such as diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), and di (2-ethylhexyl) phthalate (DEHP) was characterized. A central composite design-response surface methodology was applied to optimize the degradation of each phthalate, where the independent variables were temperature (21-41 °C), pH (5.3-8.6) and PAE concentration (79.5-920.4 mg L-1), and Gas Chromatography-Mass Spectrometry was used to identify the metabolites generated during phthalate degradation. Optimal conditions were 31 °C, pH 7.0, and an initial PAE concentration of 500 mg L-1, where the SSB-consortium removed 84.9%, 98.47%, 99.09% and 98.25% of initial DEP, DBP, BBP, and DEHP, respectively, in 168h. A first-order kinetic model explained - the biodegradation progression, while the half-life of PAE degradation ranged from 12.8 to 29.8 h. Genera distribution of the SSB-consortium was determined by bacterial meta-taxonomic analysis. Serratia, Methylobacillus, Acrhomobacter, and Pseudomonas were the predominant genera; however, the type of phthalate directly affected their distribution. Scanning electron microscopy analysis showed that high concentrations (1000 mg L-1) of phthalates induced morphological alterations in the bacterial SSB-consortium. The metabolite profiling showed that DEP, DBP, BBP, and DEHP could be fully metabolized through the de-esterification and ß-oxidation pathways. Therefore, the SSB-consortium can be considered a potential candidate for bioremediation of complex phthalate-contaminated water resources.

2.
Gut Microbes ; 16(1): 2399260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239875

RESUMEN

The gut microbiota drives progression to liver fibrosis, the main determinant of mortality in metabolic dysfunction-associated steatohepatitis (MASH). In this study, we aimed to identify bacterial species associated with protection against liver fibrosis in a high-risk population, and test their potential to protect against liver fibrosis in vivo. Based on stool shotgun metagenomic sequencing of 340 subjects from a population cohort disproportionally affected by MASH, we identified bacterial species from the Bacteroidales and Clostridiales orders associated with reduced risk of liver fibrosis. A bacterial consortium was subsequently tested in a mouse model of MASH, which demonstrated protective effects against liver fibrosis. Six of the eight inoculated bacteria were detected in mouse stool and liver. Intrahepatic presence of bacteria was further confirmed by bacterial culture of mouse liver tissue. Changes in liver histological parameters, gut functional profiles, and amino acid profiles were additionally assessed. Comparison between fibrosis-associated human metagenome and bacteria-induced metagenome changes in mice identified microbial functions likely to mediate the protective effect against liver fibrosis. Amino acid profiling confirmed an increase in cysteine synthase activity, associated with reduced fibrosis. Other microbiota-induced changes in amino acids associated with reduced fibrosis included increased gut asparaginase activity and decreased hepatic tryptophan-to-kynurenine conversion. This human-to-mouse study identified bacterial species and their effects on amino acid metabolism as innovative strategies to protect against liver fibrosis in MASH.


Asunto(s)
Aminoácidos , Bacterias , Microbioma Gastrointestinal , Cirrosis Hepática , Hígado , Animales , Humanos , Cirrosis Hepática/microbiología , Cirrosis Hepática/metabolismo , Ratones , Aminoácidos/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Hígado/metabolismo , Hígado/patología , Hígado/microbiología , Femenino , Heces/microbiología , Ratones Endogámicos C57BL , Persona de Mediana Edad , Hígado Graso/metabolismo , Hígado Graso/microbiología , Modelos Animales de Enfermedad , Metagenoma , Adulto
3.
HIV Res Clin Pract ; 25(1): 2403955, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290078

RESUMEN

The development of effective HIV cure strategies is crucial. However, most research in this area has been concentrated in high-income countries, underscoring the need to expand efforts to regions like Latin America and the Caribbean (LAC), which face distinct biomedical, social, political, and economic challenges. Data on LAC's participation in HIV cure research, along with stakeholder perceptions, reveal that the work being done in the region is scarce, fragmented, scattered, and characterized by limited resources and infrastructure. Establishing a regional consortium of basic researchers, clinicians, social scientists, and community members in LAC could be a key step in integrating the region into the global HIV cure landscape. We have already begun laying the groundwork for its creation and propose to name it 'LAC-Cura'-short for 'Latin America and the Caribbean HIV Cure Consortium'.


Asunto(s)
Investigación Biomédica , Infecciones por VIH , Humanos , América Latina , Región del Caribe , Infecciones por VIH/tratamiento farmacológico
4.
BMC Med Inform Decis Mak ; 24(1): 260, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285411

RESUMEN

BACKGROUND: Graded diagnosis and treatment, referral, and expert consultations between medical institutions all require cross domain access to patient medical information to support doctors' treatment decisions, leading to an increase in cross domain access among various medical institutions within the medical consortium. However, patient medical information is sensitive and private, and it is essential to control doctors' cross domain access to reduce the risk of leakage. Access control is a continuous and long-term process, and it first requires verification of the legitimacy of user identities, while utilizing control policies for selection and management. After verifying user identity and access permissions, it is also necessary to monitor unauthorized operations. Therefore, the content of access control includes authentication, implementation of control policies, and security auditing. Unlike the existing focus on authentication and control strategy implementation in access control, this article focuses on the control based on access log security auditing for doctors who have obtained authorization to access medical resources. This paper designs a blockchain based doctor intelligent cross domain access log recording system, which is used to record, query and analyze the cross domain access behavior of doctors after authorization. Through DBSCAN clustering analysis of doctors' cross domain access logs, we find the abnormal phenomenon of cross domain access, and build a penalty function to dynamically control doctors' cross domain access process, so as to reduce the risk of Data breach. Finally, through comparative analysis and experiments, it is shown that the proposed cross domain access control model for medical consortia based on DBSCAN and penalty function has good control effect on the cross domain access behavior of doctors in various medical institutions of the medical consortia, and has certain feasibility for the cross domain access control of doctors.


Asunto(s)
Seguridad Computacional , Humanos , Seguridad Computacional/normas , Cadena de Bloques
5.
Environ Res ; 262(Pt 2): 119973, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260723

RESUMEN

Enzymatic hydrolysis has been considered as an eco-friendly pretreatment method for enhancing bioconversion process of food waste (FW). However, existing commercial enzymes and microbial monomer-based compound enzymes (MME) have the issues of uneven distribution of enzymatic activity and low matching degree with the components of FW, leading to low efficiency with enzymatic hydrolysis and removal of antibiotic resistance genes (ARGs). This study used FW as the substrate, under the co-culture system, produced a microbial consortium-based compound enzymes (MCE) with oriented and well-matching degree for FW hydrolysis and ARGs removal, of which the performance, metabolic pathways and microbial communities were also investigated in depth. Results showed that the best performance for ARGs was achieved by the MCE prepared by mixing 1:5 of Aspergillus oryzae and Aspergillus niger after 12 days fermentation. The highest soluble chemical oxygen demand (SCOD) concentration and ARGs removal could respectively reach 83.90 ± 1.67 g/L and 45.95% after MCE pretreatment. The analysis of metabolic pathways revealed that 1:5 MCE pretreatment strengthened the catalytic activity of carbohydrate-active enzymes, increased the abundances of genes involved in cellulose and starch degradation, polysaccharide synthesis, ATP binding cassette (ABC) transporters and global regulation, while decreased the abundances of genes involved in mating pair formation system, two-component regulatory systems and quorum sensing, thereby enhanced FW hydrolysis and restrained ARGs dissemination. Microbial community analysis further indicated that the 1:5 MCE pretreatment promoted growth, metabolism and richness of functional microbes, while inhibited the host microbes of ARGs. It is expected that this study can provide useful insights into understanding the fate of ARGs in food waste during MCE pretreatment process.

6.
Front Public Health ; 12: 1395633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267642

RESUMEN

Objective: This study aims to assess the efficiency and productivity of the Luohu Hospital Group after the reform and to identify factors influencing the efficiency to support the future development of medical consortia. Methods: Data on health resources from Shenzhen and the Luohu Hospital Group for the years 2015 to 2021 were analyzed using the super-efficiency slack-based measure data envelopment analysis (SE-SBM-DEA) model, Malmquist productivity index (MPI), and Tobit regression to evaluate changes in efficiency and productivity and to identify determinants of efficiency post-reform. Results: After the reform, the efficiency of health resource allocation within the Luohu Hospital Group improved by 33.87%. Community health centers (CHCs) within the group had an average efficiency score of 1.046. Moreover, the Luohu Hospital Group's average total factor productivity change (TFPCH) increased by 2.5%, primarily due to gains in technical efficiency change (EFFCH), which offset declines in technical progress change (TECHCH). The efficiency scores of CHCs were notably affected by the ratio of general practitioners (GPs) to health technicians and the availability of home hospital beds. Conclusion: The reform in the Luohu healthcare system has shown preliminary success, but continuous monitoring is necessary. Future strategies should focus on strengthening technological innovation, training GPs, and implementing the home hospital bed policy. These efforts will optimize the efficiency of health resource allocation and support the integration and development of resources within the medical consortium.


Asunto(s)
Eficiencia Organizacional , Reforma de la Atención de Salud , Asignación de Recursos , China , Humanos , Centros Comunitarios de Salud , Asignación de Recursos para la Atención de Salud
7.
Bioresour Technol ; 413: 131459, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255948

RESUMEN

The algal-bacterial symbiosis system (ABSS) is considered as a sustainable wastewater treatment process. This review provides a comprehensive overview of the mechanisms of ABSS for the removal of common pollutant, heavy metals, and especially for emerging pollutants. For the macroscopical level, this review not only describes in detail the reactor types, influencing factors, and the development of the algal-bacterial process, but also innovatively proposes an emerging process that combines an ABSS with other processes, which enhances the efficiency of removing difficult-to-biodegrade pollutants. Further for the microscopic level, interactions between algae and bacteria, including nutrient exchange, signaling transmission and gene transfer, have been deeply discussed the symbiotic relationship with nutrient removal and biomass production. Finally, recommendations are given for the future development of the ABSS. This review comprehensively examines ABSS principles, development, algal-bacterial interactions, and application in wastewater treatment, aiming to deepen theoretical and practical understanding and advance ABSS technology.

8.
J Hazard Mater ; 480: 135773, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39270583

RESUMEN

The extensive use of pharmaceutical and personal care products (PPCPs) has led to widespread residual pollution, which increases the risk of the development of drug resistance in pathogenic microorganisms. Benzocaine is a PPCP that is widely used medical anesthesia and in sunscreen. Microorganisms are essential for the degradation of residual PPCPs. However, no studies have reported the microbial degradation of benzocaine. In this study, through continuous enrichment of the initial consortium HJ1, the highly efficient benzocaine-degrading consortium HJ7 was obtained, HJ7 exhibited a degradation rate that was 1.92 times greater than that of HJ1. Methyl 4-aminobenzoate and 4-aminobenzoic acid were identified as major intermediate products during benzocaine biodegradation by consortium HJ1 or HJ7. Methylobacillus (57.8 % ± 0.9 %) and Pseudomonas (22.1 % ± 0.7 %), which are thought to harbor essential species for benzocaine degradation, were significantly enriched in consortium HJ7. Two benzocaine-degrading strains, Pseudomonas sp. A8 and Microbacterium sp. A741, and one methyl 4-aminobenzoate-degrading strain, Achromobacter sp. A5, were isolated from consortium HJ7, and they synergistically mineralized benzocaine. These findings not only provide new insights into the biotransformation of benzocaine but also provide strain resources for the bioremediation of residual benzocaine in the environment.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39227533

RESUMEN

The release of nickel "Ni(II)" into aquatic environments is of great concern because of environmental and health issues. Metal-organic frameworks (MOFs) are one of the most promising technologies for removing heavy metals from water. In this work, an octahedral Co-based MOF (Co-MOF) was synthesized with a high Ni(II) removal capacity (qmax of 1534.09 ± 45.49 mg g-1) in aqueous media. For the first time, the effect of Co-MOF alone and in co-exposure with Ni(II) on nitrifying microbial consortium was assessed using dynamic microrespirometry. A single concentration of Co-MOF had no significant effects on nitrifying microbial consortium, while the concentration of Ni(II) exerted non-competitive inhibition on the nitrifying microbial consortium with an IC50 of 1.67 ± 0.03 mg L-1. In addition, the theoretical speciation analysis showed a decrease of 40% of IC50 when the free Ni(II) concentration was considered. Co-exposure of Co-MOF and Ni(II) during the nitrifying process allowed us to conclude that Co-MOF is an effective adsorbent for Ni(II) and can be used to mitigate the inhibitory effects of nickel on nitrifying microbial consortia, which is crucial for maintaining the good operation of wastewater treatment and balance of nitrogen cycle.

10.
Front Microbiol ; 15: 1444374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220045

RESUMEN

The pollution of heavy metals (HMs) is a major environmental concern for agricultural farming communities due to water scarcity, which forces farmers to use wastewater for irrigation purposes in Pakistan. Vegetables grown around the cities are irrigated with domestic and industrial wastewater from areas near mining, paint, and ceramic industries that pollute edible parts of crops with various HMs. Cadmium (Cd) is an extremely toxic metal in arable soil that enters the food chain and damages the native biota, ultimately causing a reduction in plant growth and development. However, the use of microbes and growth regulators enhances plant growth and development as well as HM immobilization into the cell wall and hinders their entry into the food chain. Thus, the integrated use of bacterial consortium along with exogenously applied jasmonic acid (JA) mitigates the adverse effect of metal stress, ultimately reducing the metal mobility into roots by soil. Therefore, the current study was conducted to check the impact of Cd-tolerant bacteria and JA on the growth, nutrient status, and uptake of Cd in the cauliflower (Brassica oleracea). Our results demonstrated that increasing concentrations of Cd negatively affect growth, physiological, and biochemical attributes, while the use of a bacterial consortium (SS7 + SS8) with JA (40 µmol L-1) significantly improved chlorophyll contents, stem fresh and dry biomass (19.7, 12.7, and 17.3%), root length and root fresh and dry weights (28.8, 15.2, and 23.0%), and curd fresh and dry weights and curd diameter (18.7, 12.6, and 15.1%). However, the maximum reduction in soil Cd, roots, and curd uptake was observed by 8, 11, and 9.3%, respectively, under integrated treatment as compared to the control. Moreover, integrating bacterial consortium and JA improves superoxide dismutase (SOD) (16.79%), peroxidase dismutase (POD) (26.96%), peroxidase (POX) (26.13%), and catalase (CAT) (26.86%). The plant nitrogen, phosphorus, and potassium contents were significantly increased in soil, roots, and curd up to 8, 11, and 9.3%, respectively. Hence, a consortium of Klebsiella strains in combination with JA is a potential phytostabilizer and it reduces the uptake of Cd from soil to roots to alleviate the adverse impact on cauliflower's growth and productivity.

11.
Pharm Res ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231907

RESUMEN

PURPOSE: The concept of a Design Space (DSp) was introduced in ICH Q8 as a tool within the quality-by-design (QbD) approach to pharmaceutical development with the intent of being globally applicable. However, there appears to be variance in the regulatory agency expectations in pharmaceutical product filing and implementation of DSp. This paper presents some of the current industry perspective on design space. METHODS: The Utilization of Design Space for Filings (UDSpF) Working Group in the Innovation and Quality (IQ) Consortium conducted a survey to establish a baseline for the current understanding of DSp among IQ member companies and assess the similarities and/or differences in strategies when filing a DSp. The survey focused on how IQ member companies approach DSp development, the primary drivers for the DSp, the presentation of the DSp in the filing, DSp verification and the benefits and flexibility anticipated and/or realized. RESULTS: A total of 14 responses were received and analyzed representing a small sample size but a large proportion of the innovator industry/large pharmaceutical companies. The survey results revealed that DSp is not yet a commonplace for small molecule drug products and may not even be utilized as much in large molecule drug products. The benefits of DSp, with respect to enhanced process understanding, are well understood by the sponsors; however, the benefits of filed DSp with respect to manufacturing flexibility are not fully realized in the commercial lifecycle of the product. There are also challenges in gaining consistent buy-in/value proposition for DSp among cross-functional teams within organizations. CONCLUSIONS: There are still gaps in design space implementation for its full benefit in the pharmaceutical industry. The WG has presented a unified view from member companies on the approach to DSp considering when/where the DSp experiments are conducted and on the extent of the DSp development proposed in a dossier.

12.
Best Pract Res Clin Obstet Gynaecol ; 97: 102543, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243520

RESUMEN

The Dutch NIPT Consortium, a multidisciplinary collaboration of stakeholders in prenatal care initiated and launched the TRIDENT studies. The goal of the TRIDENT studies was to implement non-invasive prenatal testing (NIPT), first as a contingent (second-tier) and later as a first-tier test, and to evaluate this implementation. This paper describes how NIPT can be successfully implemented in a country or state. Important factors include the significance of forming a consortium and encouraging cooperation among relevant stakeholders, appropriate training for obstetric care professionals, and taking into account the perspectives of pregnant women when implementing prenatal tests. We describe the advantages of high sensitivity and specificity when comparing contingent NIPT with first-tier NIPT. This paper emphasizes the value of pre- and post-test counselling and the requirement for a standardized method of information delivery and value clarification, to assist couples in decision making for prenatal screening.

13.
J Family Med Prim Care ; 13(8): 2892-2899, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39228563

RESUMEN

Purpose: The aim was to analyse the knowledge and awareness regarding Ayushman Bharat - Pradhan Mantri Jan Arogya Yojana (AB-PMJAY) within the operational districts of two high-volume non-profit eye organisations in Uttar Pradesh. Challenges faced by beneficiaries and non-beneficiaries are also examined. Methods: A prospective cross-sectional survey from November 2021 to April 2022 was conducted across operational districts of organisations A and B. Cluster sampling was used to select participants in randomly selected villages with 200 or more households, within 10-15 km of existing vision centres. A semi-structured interview schedule was used to collect data. The means of AB-PMJAY indicators were estimated. Awareness was estimated as a summed score. Multivariate logistic regression was applied to check the effects of the socio-economic and socio-demographic factors on the awareness of AB-PMJAY for both organisations separately and together. Results: A total of 1151 participants were interviewed: 52.9% from the catchment area of organisation A and 47.1% from that of organisation B. From the catchment of organisations A and B, 82.6% and 22.9% participants, respectively, had heard of the scheme, mostly from family and friends. Whereas 43% interviewees from the catchment area of organisation A and 8.5% from that of organisation B had knowledge about at least one topic, only 8.5% and 2.8%, respectively, were knowledgeable about all topics. Village effect was found to be significant for most of the knowledge and awareness indicators in both catchments. Only 37.8% and 20.2% of the catchment from organisations A and B, respectively, were AB-PMJAY cardholders. Of the services availed, 50% were cataract surgery. Almost 40% of the applicants faced some challenges while securing the AB-PMJAY card and 9% while using the AB-PMJAY card. Family income was found to be the only common predictor of knowledge at both locations. Conclusion: Varied awareness and limited knowledge in catchment villages put the onus on community eyecare organisations to spread awareness in their catchment, which may increase the uptake and utilisation of the scheme.

14.
3 Biotech ; 14(10): 220, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39247458

RESUMEN

Crude oil contamination has been widely recognized as a major environmental issue due to its various adverse effects. The use of inhabitant microorganisms (native to the contaminated sites) to detoxify/remove pollutants owing to their diverse metabolic capabilities is an evolving method for the removal/degradation of petroleum industry contaminants. The present study deals with the exploitation of native resident bacteria from crude oil contaminated site (oil exploration field) for bioremediation procedures. Fifteen (out of forty-four) bioremediation-relevant aerobic bacterial strains, belonging to the genera of Bacillus, Stenotrophomonas, Pseudomonas, Paenibacillus, Rhizobium, Burkholderia, and Franconibacter, isolated from crude oil containing sludge, have been selected for the present bioremediation study. Crude oil bioremediation performance of the selected bacterial consortium was assessed using microcosm-based studies. Stimulation of the microbial consortium with nitrogen or phosphorous led to the degradation of 60-70% of total petroleum hydrocarbon (TPH) in 0.25% and 0.5% crude oil experimental sets. CO2 evolution, indicative of crude oil mineralization, was evident with the highest evolution being 28.6 mg mL-1. Ecotoxicity of treated crude oil-containing media was assessed using plant seed germination assay, in which most of the 0.25% and 0.5% treated crude oil sets gave positive results thereby suggesting a reduction in crude oil toxicity.

15.
Braz J Microbiol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222219

RESUMEN

Extensive Monocrotophos (MCP) application in agricultural soils has led to its ubiquitous accumulation in the environment. Human health can be adversely affected by chronic exposure to produce and water from such areas, causing endocrine dysfunction, birth defects, blood and nervous disorders. This study investigated the possibility of detecting Monocrotophos-degrading bacteria in soil samples taken from a cotton cultivation field in a local area. We isolated a consortium that could tolerate and neutralize Monocrotophos upto a concentration of 2000 ppm. The consortium on 16 S rRNA sequencing were identified as Micrococcus luteus SBR2, Rhodococcus SBR5, Bacillus aryabhattai SBR8, Ochrobactrum intermedium SBK2. Significant tolerance of individual strains in the range of 500-5000 ppm was observed when incubating them in vitro with Monocrotophos in minimal salt medium. An analysis of the degrading genes opdA, mpd, and opd revealed plasmid borne opdA and mpd in the O.intermedium strain and B.aryabhattai strain. All the strains indicated genomic opdA and mpd whereas opd was not detected in plasmid or genomic DNA. The HPLC showed no peak at 2.5 min, when individual strains were incubated with Monocrotophos. The HPLC analysis of soil samples incubated with the consortium for two weeks showed complete degradation of Monocrotophos. GC-MS analysis confirmed that Monocrotophos and its solvent cyclohexamide were degraded into non-toxic compounds such as cyclotrisiloxane compounds, acetic acid, and others. This study indicates that the expression of organophosphate hydrolyzing enzymes in the consortium can greatly contribute to the neutralization of organophosphorus compounds and also serve as a bioremediation method for agricultural soils.

16.
JACC Adv ; 3(9): 101212, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39253713

RESUMEN

Background: Periprocedural myocardial injury impacts clinical outcome after transcatheter aortic valve replacement (TAVR). The optimal medical management strategy for TAVR-related periprocedural myocardial injury has not been established. Objectives: The authors aimed to investigate the prognostic association of renin-angiotensin system (RAS) inhibitors in patients with periprocedural myocardial injury after TAVR. Methods: In a prospective TAVR registry, patients were retrospectively stratified according to Valve Academic Research Consortium (VARC)-3 periprocedural myocardial injury and RAS inhibitor prescription after TAVR. The main outcomes of interest were prevalence of myocardial injury and cardiovascular death. Logistic and Cox proportional hazards regression were used to analyze outcomes of interest. Results: Among 2,083 eligible patients undergoing TAVR between August 2007 and June 2023, 283 patients (13.8%) developed VARC-3 periprocedural myocardial injury. RAS inhibitors were prescribed in 197 patients (70%) with periprocedural myocardial injury and in 1,251 patients (71.2%) without injury. Compared with patients without periprocedural myocardial injury, patients with myocardial injury had an increased risk of cardiovascular death at 1 year (HRadjusted: 2.08; 95% CI: 1.39-3.11). The use of RAS inhibitors after TAVR was associated with a reduced risk of cardiovascular death in patients with and without periprocedural myocardial injury (HRadjusted: 0.46; 95% CI: 0.22-0.95, and HRadjusted: 0.44; 95% CI: 0.30-0.65, respectively). Conclusions: One out of 7 patients undergoing TAVR experienced periprocedural myocardial injury. VARC-3 periprocedural myocardial injury was associated with a 2-fold increased risk of cardiovascular death at 1 year after TAVR. The favorable association of RAS inhibitor prescription was consistent in patients with and without periprocedural myocardial injury. (SwissTAVI Registry; NCT01368250).

17.
J Environ Manage ; 370: 122400, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39255579

RESUMEN

The widespread use of non-ionic surfactant nonylphenol (NP) has led to significant water pollution, posing a threat to both ecological stability and human health. However, the efficient biodegradation method and system of NP-biodegradation remain complex scientific challenges. In this study, we isolated and characterized three Pseudomonas sp. strains SW-1 (Scenedesmus quadricauda-associated), ZL-2 (Ankistrodesmus acicularis-associated), XQ-3 (Chlorella vulgaris-associated), and one NP-degrading Cupriavidus sp. strain EB-4, which exhibited the ability to utilize NP as the sole carbon source. Furthermore, four consortiums of microalgae-bacterial, S. quadricauda and SW-1 (S-SW), A. acicularis and ZL-2 (A-ZL), C. vulgaris and XQ-3 (C-XQ), S. quadricauda and EB-4 (S-EB), were constructed to investigate their biodegradability and kinetic characteristics of NP degradation from water. The consortiums showed higher degradation efficiency compared to individual microalgae or bacteria. The C-XQ consortium exhibited the highest degradation rate, removing over 94% of NP within just seven days. The first-order model with the following order of degradation rate by consortiums was C-XQ (0.3960 d-1) > S-SW (0.3506 d-1) > A-ZL (0.1968 d-1) > S-EB (0.1776 d-1). Compared with the results of our previous study, the interaction between microalgae and bacteria is not a simple additive relationship. Our findings highlight the potential of an algal-bacterial consortium for the remediation of NP-contaminated environments.

18.
J Agric Food Chem ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256187

RESUMEN

Acetochlor residues can contaminate anoxic habitats where anaerobic microbial transformation dominates. Herein, a highly efficient anaerobic acetochlor-degrading consortium ACT6 was enriched using sulfate and acetochlor as selection pressures. The acclimated consortium ACT6 showed an 8.7-fold increase in its ability to degrade acetochlor compared with the initial consortium ACT1. Two degradation pathways of acetochlor were found: reductive dechlorination and thiol-substitution dechlorination in the chloroacetyl group, in which the latter dominated. Acclimation enhanced the abundances of Desulfovibrio, Proteiniclasticum, and Lacrimispora from 0.7 to 28.0% (40-fold), 4.7 to 18.1% (4-fold), and 2.3 to 12.3% (5-fold), respectively, which were positively correlated with sulfate concentrations and acetochlor degradation ability. Three acetochlor-degrading anaerobes were isolated from the acclimated consortium ACT6, namely Cupidesulfovibrio sp. SRB-5, Proteiniclasticum sp. BAD-10, and Lacrimispora sp. BAD-7. This study provides new insights into the anaerobic catabolism of acetochlor and the anaerobic treatment of acetochlor in wastewater.

19.
J Basic Microbiol ; : e2400225, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113273

RESUMEN

The integrated application of inorganic fertilizers, organic fertilizers, and biofertilizers helps sustain the nutrient pool and benefits the soil quality, thereby boosting plant health. The effect of different combinations of biofertilizers (consortium biofertilizer [CBF]-non-rhizobial PGPR), inorganic fertilizers, and organic fertilizers on soil health, growth, and yield of cowpea was evaluated by conducting a field experiment. The application of N100 FYM + CBF resulted in significantly higher populations of bacteria, fungi, PSB, and diazotroph, as well as soil dehydrogenase and alkaline phosphatase enzyme activities. However, the application of N100 FYM recorded a significantly higher actinomycetes population. The application of N100 FYM + CBF resulted in significantly higher soil OC, available nitrogen, phosphorus, and potassium. The soil pH was recorded to be highest in control, and soil EC was recorded to be lowest in control. The plant uptake of nitrogen, phosphorus, and potassium was significantly higher with N50 FYM + NP50 + CBF. The root-shoot biomass, number of leaves, nodules/plant, number of pods/plants, pod biomass, pod length, and pod width were significantly higher in treatment having N50 FYM + NP50 + CBF. However, the height of the plant, number of branches, and biomass of leaves were highest in treatment with N25 FYM + NP75 + CBF. The pod and stover yield were significantly higher in treatment with N50 FYM + NP50 + CBF. The results showed that the integrated application of non-rhizobial PGPR along with organic and inorganic fertilizer helps to improve overall soil health, quality, and plant growth of forage cowpea contributing to an increase in crop yield.

20.
J Microbiol Biol Educ ; : e0013324, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189729

RESUMEN

It is well known that bacterial communities are an essential component to maintain the balance of terrestrial ecosystems due to the functions and services performed by microorganisms in the environment. The research seeking on alternative energy sources has shown that bacterial communities can bioconvert the chemical energy of an organic substrate into electrical energy, within devices known as microbial fuel cells. For this reason, this class project allows students of Biotechnology, Environmental Science, and Microbiology to apply the appropriate methodology to develop a class project throughout an environmental bacterial community capable of generating electrical energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA