Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.511
Filtrar
1.
Mol Neurobiol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292341

RESUMEN

Gap junctions (GJs) play a crucial role in the survival of oligodendrocytes and myelination of the central nervous system (CNS). In this study, we investigated the spatiotemporal changes in the expression of oligodendroglial GJ protein connexin 47 (Cx47), its primary astroglial coupling partner, Cx43, and their association with demyelination following intracerebral infection with mouse hepatitis virus (MHV). Neurotropic strains of MHV, a ß-coronavirus, induce an acute encephalomyelitis followed by a chronic demyelinating disease that shares similarities with the human disease multiple sclerosis (MS). Our results reveal that Cx47 GJs are persistently lost in mature oligodendrocytes, not only in demyelinating lesions but also in surrounding normal appearing white and gray matter areas, following an initial loss of astroglial Cx43 GJs during acute infection. At later stages after viral clearance, astroglial Cx43 GJs re-emerge but mature oligodendrocytes fail to fully re-establish GJs with astrocytes due to lack of Cx47 GJ expression. In contrast, at this later demyelinating stage, the increased oligodendrocyte precursor cells appear to exhibit Cx47 GJs. Our findings further highlight varying degrees of demyelination in distinct spinal cord regions, with the thoracic cord showing the most pronounced demyelination. The regional difference in demyelination correlates well with dynamic changes in the proportion of different oligodendrocyte lineage cells exhibiting differential Cx47 GJ expression, suggesting an important mechanism of progressive demyelination even after viral clearance.

2.
J Stroke Cerebrovasc Dis ; : 108000, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278603

RESUMEN

BACKGROUND: Connexin 43 (Cx43) plays a crucial role in mediating intracellular communication and facitating the interaction between exosomes and recipient cells. This study investigates whether the activation of cAMP/protein kinase A (PKA) can regulate exosomal Cx43 expression and contribute to the functional recovery following ischemia-reperfusion (I/R) injury. METHODS: An intraluminal vascular occlusion was performed on Lewis rats to simulate I/R injury. Concurrently, a PKA activator (8-Bromo-cAMP, 5 mg/kg) or PKA inhibitor (H 89 2HCl, 20 mg/kg) was administered intravenously via the tail vein (n = 10). Exosomes were isolated from cerebrospinal fluid, and the expression of exosomal markers (CD63 and CD81) and Cx43 was analyzed using Western blot. The expression of CD63 and CD81 in astrocytes was measured to assess exosome uptake. Spatial learning and memory capability were evaluated using the Morris water maze test. RESULTS: 8-Bromo-cAMP significantly increased exosome release in cerebrospinal fluid, accompanied by elevated Cx43 expression. Additionally, 8-Bromo-cAMP enhanced exosome uptake by astrocytes, alleviated blood-brain barrier damage and edema, and improved cognitive function. CONCLSIONS: PKA activation enhances exosome production, promotes cognitive function recovery, and attenuates cerebral I/R injury by up-regulating exosomal Cx43 expression.

3.
Stem Cell Res Ther ; 15(1): 286, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256871

RESUMEN

BACKGROUND: The formation of stem cell clones enables close contact of stem cells inside. The gap junctions in such clone spheres establish a microenvironment that allows frequent intercellular communication to maintain self-renewal and functions of stem cells. Nevertheless, the essential gap junction protein for molecular signaling in clones is poorly known. METHODS: Primary human airway basal cells (hBCs) were isolated from brushing samples through bronchoscopy and then cultured. A tightly focused femtosecond laser was used to excite the local Ca2+ in an individual cell to initiate an internal Ca2+ wave in a clone to screen gap junction proteins. Immunoflourescence staining and clonogenicity assay were used to evaluate self-renewal and functions. RNA and protein levels were assessed by PCR and Western blot. Air-liquid interface assay was conducted to evaluate the differentiation potential. A Naphthalene injury mouse model was used to assess the regeneration potential. RESULTS: Herein, we identify Connexin 25 (Cx25) dominates intercellular Ca2+ communications in clones of hBCs in vitro to maintain the self-renewal and pluripotency of them. The self-renewal and in vitro differentiation functions and in vivo regeneration potential of hBCs in an airway damage model are both regulated by Cx25. The abnormal expression of Cx25 is validated in several diseases including IPF, Covid-19 and bronchiectasis. CONCLUSION: Cx25 is essential for hBC clones in maintaining self-renewal and functions of hBCs via gap junctions.


Asunto(s)
Conexinas , Regeneración , Humanos , Animales , Ratones , Conexinas/metabolismo , Conexinas/genética , Diferenciación Celular , COVID-19/metabolismo , COVID-19/virología , COVID-19/patología , Uniones Comunicantes/metabolismo , Autorrenovación de las Células , Calcio/metabolismo , Células Cultivadas , SARS-CoV-2/metabolismo , Masculino , Células Madre/metabolismo , Células Madre/citología
4.
Cureus ; 16(7): e63861, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39099899

RESUMEN

Brugada syndrome is a rare cardiac condition characterized by distinctive electrocardiogram patterns, predisposing individuals to fatal arrhythmias. While primarily linked to a loss-of-function mutation in the SCN5A gene, acquired forms of the syndrome have been associated with various factors, including drug use. We present a case of a 31-year-old female who presented to the emergency department unresponsive following cocaine use and developed type 1 Brugada ECG patterns alongside an incomplete right bundle branch block in V1-V3, ST elevations with biphasic waves, and diffuse repolarization abnormalities with J point deviations while in the intensive care unit. This study aimed to discuss the complexity of managing drug-induced Brugada-like findings and highlights the need for further research into the mechanisms underlying cocaine-induced cardiac effects. We aimed to discuss potential mechanisms for the impact of cocaine as its role as a sodium channel blocker and its potential effects on connexin 43 in the context of Brugada syndrome. This study also reinforced the importance of differentiating between true Brugada syndrome and other similar ECG changes for appropriate care management.

5.
Inflamm Res ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095656

RESUMEN

BACKGROUND AND OBJECTIVE: Neuropathic pain is a chronic condition characterized by aberrant signaling within the somatosensory system, affecting millions of people worldwide with limited treatment options. Herein, we aim at investigating the potential of a sigma-1 receptor (σ1R) antagonist in managing neuropathic pain. METHODS: A Chronic Constriction Injury (CCI) model was used to induce neuropathic pain. The potential of (+)-MR200 was evaluated following daily subcutaneous injections of the compound. Its mechanism of action was confirmed by administration of a well-known σ1R agonist, PRE084. RESULTS: (+)-MR200 demonstrated efficacy in protecting neurons from damage and alleviating pain hypersensitivity in CCI model. Our results suggest that (+)-MR200 reduced the activation of astrocytes and microglia, cells known to contribute to the neuroinflammatory process, suggesting that (+)-MR200 may not only address pain symptoms but also tackle the underlying cellular mechanism involved. Furthermore, (+)-MR200 treatment normalized levels of the gap junction (GJ)-forming protein connexin 43 (Cx43), suggesting a reduction in harmful intercellular communication that could fuel the chronicity of pain. CONCLUSIONS: This approach could offer a neuroprotective strategy for managing neuropathic pain, addressing both pain symptoms and cellular processes driving the condition. Understanding the dynamics of σ1R expression and function in neuropathic pain is crucial for clinical intervention.

6.
Cardiovasc Diabetol ; 23(1): 309, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175027

RESUMEN

BACKGROUND: The associations of risk factors with vascular impairment in type 1 diabetes patients seem more complex than that in type 2 diabetes patients. Therefore, we analyzed the associations between traditional and novel cardiovascular risk factors and vascular parameters in individuals with T1D and modifications of these associations according to sex and genetic factors. METHODS: In a cross-sectional study, we analyzed the association of risk factors in T1D individuals younger than 65 years using vascular parameters, such as ankle brachial index (ABI) and toe brachial index (TBI), duplex ultrasound, measuring the presence of plaques in carotid and femoral arteries (Belcaro score) and intima media thickness of carotid arteries (CIMT). We also used photoplethysmography, which measured the interbranch index expressed as the Oliva-Roztocil index (ORI), and analyzed renal parameters, such as urine albumin/creatinine ratio (uACR) and glomerular filtration rate (GFR). We evaluated these associations using multivariate regression analysis, including interactions with sex and the gene for connexin 37 (Cx37) polymorphism (rs1764391). RESULTS: In 235 men and 227 women (mean age 43.6 ± 13.6 years; mean duration of diabetes 22.1 ± 11.3 years), pulse pressure was strongly associated with unfavorable values of most of the vascular parameters under study (ABI, TBI, Belcaro scores, uACR and ORI), whereas plasma lipids, represented by remnant cholesterol (cholesterol - LDL-HDL cholesterol), the atherogenic index of plasma (log (triglycerides/HDL cholesterol) and Lp(a), were associated primarily with renal impairment (uACR, GFR and lipoprotein (a)). Plasma non-HDL cholesterol was not associated with any vascular parameter under study. In contrast to pulse pressure, the associations of lipid factors with kidney and vascular parameters were modified by sex and the Cx37 gene. CONCLUSION: In addition to known information, easily obtainable risk factor, such as pulse pressure, should be considered in individuals with T1D irrespective of sex and genetic background. The associations of plasma lipids with kidney function are complex and associated with sex and genetic factors. The decision of whether pulse pressure, remnant lipoproteins, Lp(a) and other determinants of vascular damage should become treatment targets in T1D should be based on the results of future clinical trials.


Asunto(s)
Diabetes Mellitus Tipo 1 , Proteína alfa-4 de Unión Comunicante , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice Tobillo Braquial , Grosor Intima-Media Carotídeo , Estudios Transversales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/fisiopatología , Proteína alfa-4 de Unión Comunicante/genética , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Factores de Riesgo de Enfermedad Cardiaca , Fenotipo , Fotopletismografía , Polimorfismo Genético , Factores Sexuales
7.
Br J Pharmacol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091175

RESUMEN

BACKGROUND AND PURPOSE: Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but its discontinuation leads to discontinuation syndrome/catatonia complicated by benzodiazepine-resistance and rhabdomyolysis. EXPERIMENTAL APPROACH: This study determined time-dependent effects of exposure and subsequent discontinuation of clozapine on expression of connexin43, 5-HT receptors, intracellular L-ß-aminoisobutyrate (L-BAIBA) and 2nd-messengers and signalling of AMPK, PP2A and Akt in cultured astrocytes and rat frontal cortex. KEY RESULTS: Intracellular L-BAIBA levels increased during clozapine exposure but immediately recovered after discontinuation. Both exposure to clozapine and L-BAIBA increased connexin43 and signalling of AMPK/Akt time-dependently, but reduced PP2A signalling, 5-HT receptor expression and IP3 level. These changes recovered within 2 weeks after discontinuation, while 5-HT receptors and IP3 transiently increased during the recovery process. L-BAIBA activated AMPK signalling, leading to attenuated PP2A signalling. Astroglial D-serine release was increased by clozapine exposure but continued to increase within 1 week after discontinuation via activation of IP3 receptor function. CONCLUSION AND IMPLICATIONS: Clozapine discontinuation restored PP2A signalling due to decreased L-BAIBA, increased 5-HT receptor expression via probably enhanced 5-HT receptor recycling, but increased astroglial D-serine release persisted by transiently activated IP3 receptors via transiently increased IP3 level. Decreased L-BAIBA caused by clozapine discontinuation is, at least partially, involved in the transiently increased 5-HT receptor and astroglial D-serine release.

9.
Int Immunopharmacol ; 140: 112827, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116497

RESUMEN

AIM: Hyperhomocysteine has been recognized as an independent risk factor of multiple diseases, including several eye diseases. In this study, we aim to investigate whether increased homocysteine (Hcy) is related to cataracts, and to explore whether dysregulation of mTOR-mediated autophagy and connexin expression are underlying mechanisms. METHOD: We first developed a method of liquid chromatography tandem mass spectrometry to accurately measure serum concentrations of Hcy in 287 cataract patients and 334 healthy controls. Next, we treated human lens epithelial (HLC-B3) cells with Hcy at different concentrations and durations, and then analyzed expression of autophagy-related markers and connexins, as well as phosphorylated mTOR (p-mTOR) in these cells by Western blotting. Formation of autophagic vacuoles and intracellular Ca2+ in the Hcy-treated cells were observed by fluorescence microscopy. Further, we performed a rescue experiment in the Hcy-treated HLC-B3 cells by pre-incubation with rapamycin, an mTOR inhibitor. RESULTS: The serum levels of Hcy in patients with cataracts were significantly increased compared to those in healthy controls. In cultured HLC-B3 cells, expression of autophagy related markers (LC3B and Beclin1) and connexins (Cx43 and Cx50) was inhibited by Hcy treatment in a dose- and duration-dependent manner. Accumulation of Ca2+ in the Hcy-treated lens epithelial cells was observed as a consequence of reduced connexin expression. Meanwhile, expression of p-mTOR increased, representing up-regulation of the mTOR pathway. Importantly, inhibition of autophagy and connexin expression due to hyperhomocysteine was rescued via mTOR suppression by pretreatment with rapamycin in HLC-B3 cells. CONCLUSION: Our results demonstrate that hyperhomocysteine might promote cataract development through two mTOR-mediated pathways in the lens epithelial cells: 1) dysregulation of autophagy and 2) accumulation of intracellular calcium via decreased connexin expression.


Asunto(s)
Autofagia , Catarata , Conexinas , Homocisteína , Cristalino , Serina-Treonina Quinasas TOR , Humanos , Catarata/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia/efectos de los fármacos , Homocisteína/sangre , Masculino , Persona de Mediana Edad , Femenino , Conexinas/metabolismo , Cristalino/metabolismo , Cristalino/efectos de los fármacos , Línea Celular , Calcio/metabolismo , Anciano , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Conexina 43/metabolismo , Adulto , Beclina-1/metabolismo
10.
Int J Pharm ; 663: 124576, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39134288

RESUMEN

Extracellular vesicles (EVs) have emerged as a promising drug delivery system. Connectosomes are a specialized type of EVs that contain connexins in their membranes. Connexin is a surface transmembrane protein that forms connexin hemichannels. When a connexin hemichannel on a connectosome docks with another connexin hemichannel of a target cell, they form a gap junction that allows direct intracellular delivery of therapeutic cargos from within the connectosome to the cytoplasm of the recipient cell. In the present study, we tested the feasibility of converting connectosomes into dry powders by (thin-film) freeze-drying to enable their potential storage in temperatures higher than the recommended -80 °C, while maintaining their activity. Connectosomes were isolated from a genetically engineered HeLa cell line that overexpressing connexin-43 subunit protein tagged with red fluorescence protein. To facilitate the testing of the function of the connectosomes, they were loaded with calcein green dye. Calcein green-loaded connectosomes were thin-film freeze-dried with trehalose alone or trehalose and a polyvinylpyrrolidone polymer as lyoprotectant(s) to produce amorphous powders with high glass transition temperatures (>100 °C). Thin-film freeze-drying did not significantly change the morphology and structure of the connectosomes, nor their particle size distribution. Based on data from confocal microscopy, flow cytometry, and fluorescence spectrometry, the connexin hemichannels in the connectosomes reconstituted from the thin-film freeze-dried powder remained functional, allowing the passage of calcein green through the hemichannels and the release of the calcein green from the connectosomes when the channels were opened by chelating calcium in the reconstituted medium. The function of connectosomes was assessed after one month storage at different temperatures. The connexin hemichannels in connectosomes in liquid lost their function when stored at -19.5 ± 2.2 °C or 6.0 ± 0.5 °C for a month, while those in dry powder form remained functional under the same storage conditions. Finally, using doxorubicin-loaded connectosomes, we showed that the connectosomes reconstituted from thin-film freeze-dried powder remained pharmacologically active. These findings demonstrate that (thin-film) freeze-drying represents a viable method to prepare stable and functional powders of EVs that contain connexins in their membranes.


Asunto(s)
Vesículas Extracelulares , Liofilización , Polvos , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Células HeLa , Conexina 43/metabolismo , Trehalosa/química , Fluoresceínas/química , Povidona/química , Conexinas/metabolismo , Tamaño de la Partícula
11.
Bio Protoc ; 14(14): e5034, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39100594

RESUMEN

Overexpression of proteins in transiently transfected cells is a simple way to study basic transport mechanisms and the underlying protein-protein interactions. While expression systems have obvious drawbacks compared to in vivo experiments, they allow a quick assessment of more conserved functions, for instance, ER export or sorting of proteins in the Golgi. In a previous study, our group described the formation of ER-derived removal vesicles for the gap junction protein Cx36 in transfected HEK293T cells. These removal vesicles, termed "whorls" because of their concentric structure, were formed by Cx36 channels that failed to escape the ER. In this article, we describe an imaging protocol that can be used to determine these ER retention defects for Cx36 expressed in cultured cells. The protocol we provide here employs regular confocal microscopy, which allows for sufficient resolution to reveal the characteristic shape of ER whorls.

12.
Sci Total Environ ; 951: 175606, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39159698

RESUMEN

Glyphosate (GLY) is the most universally used herbicide worldwide and its application has caused extensive pollution to the ecological environment. Increasing evidence has revealed the multi-organ toxicity of GLY in different species, but its male reproductive toxicity in avian species remains unknown. Thus, in vivo and in vitro studies were conducted to clarify this issue. Data firstly showed that chronic GLY exposure caused testicular pathological damage. Intriguingly, we identified and verified a marked down-regulation gap junction gene Connexin 43 (Cx43) in GLY-exposed rooster testis by transcriptome analysis. Cx43 generated by Sertoli cells acts as a key component of blood-testis barrier (BTB). To further investigate the cause of GLY-induced downregulation of Cx43 to disrupt BTB, we found that autophagy activation is revealed in GLY-exposed rooster testis and primary avian Sertoli cells. Moreover, GLY-induced Cx43 downregulation was significantly alleviated by ATG5 knockdown or CQ administration, respectively, demonstrating that GLY-induced autophagy activation contributed to Cx43 degradation. Mechanistically, GLY-induced autophagy activation and resultant Cx43 degradation was due to its direct interaction with ER-α. In summary, these findings demonstrate that chronic GLY exposure activates autophagy to induce Cx43 degradation, which causes BTB damage and resultant reproductive toxicity in roosters.


Asunto(s)
Autofagia , Barrera Hematotesticular , Pollos , Conexina 43 , Glicina , Glifosato , Herbicidas , Animales , Masculino , Barrera Hematotesticular/efectos de los fármacos , Conexina 43/metabolismo , Conexina 43/genética , Glicina/análogos & derivados , Glicina/toxicidad , Autofagia/efectos de los fármacos , Herbicidas/toxicidad , Exposición Dietética , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo
13.
Front Immunol ; 15: 1440662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136016

RESUMEN

Background: Cardiac arrhythmias are the main cause of sudden death due to Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as associations with cardiac arrhythmias in CCC. Methods: C57Bl/6 mice infected with Trypanosoma cruzi underwent cardiac evaluations at 6 and 12 months after infection via treadmill testing and EKG. Histopathology, cytokine gene expression, and distribution of total Cx43 and its phosphorylated forms Cx43S368 and Cx43S325/328/330 were investigated. Human heart samples obtained from subjects with CCC were submitted to immunofluorescence analysis. In vitro simulation of a pro-inflammatory microenvironment (IL-1ß, TNF, and IFN-γ) was performed in H9c2 cells and iPSC-derived cardiomyocytes to evaluate Cx43 distribution, action potential duration, and Lucifer Yellow dye transfer. Results: Mice chronically infected with T. cruzi exhibited impaired cardiac function associated with increased inflammation, fibrosis and upregulated IL-1ß, TNF, and IFN-γ gene expression. Confocal microscopy revealed altered total Cx43, Cx43S368 and Cx43S325/328/330 localization and phosphorylation patterns in CCC, with dispersed staining outside the intercalated disc areas, i.e., in lateral membranes and the cytoplasm. Reduced co-localization of total Cx43 and N-cadherin was observed in the intercalated discs of CCC mouse hearts compared to controls. Similar results were obtained in human CCC heart samples, which showed Cx43 distribution outside the intercalated discs. Stimulation of human iPSC-derived cardiomyocytes or H9c2 cells with IL-1ß, TNF, and IFN-γ induced alterations in Cx43 localization, reduced action potential duration and dye transfer between adjacent cells. Conclusion: Heart inflammation in CCC affects the distribution and phosphorylation pattern of Cx43, which may contribute to the generation of conduction disturbances in Chagas disease.


Asunto(s)
Cardiomiopatía Chagásica , Conexina 43 , Ratones Endogámicos C57BL , Miocitos Cardíacos , Conexina 43/metabolismo , Conexina 43/genética , Animales , Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/patología , Cardiomiopatía Chagásica/inmunología , Cardiomiopatía Chagásica/parasitología , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/parasitología , Miocitos Cardíacos/patología , Inflamación/metabolismo , Fosforilación , Masculino , Enfermedad Crónica , Trypanosoma cruzi , Modelos Animales de Enfermedad , Línea Celular , Citocinas/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/parasitología , Arritmias Cardíacas/inmunología , Femenino
14.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126115

RESUMEN

Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1ß), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1ß showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.


Asunto(s)
Condrocitos , Conexina 43 , Interleucina-1beta , Osteoartritis , Osteoblastos , Factor de Necrosis Tumoral alfa , Humanos , Conexina 43/metabolismo , Conexina 43/genética , Condrocitos/metabolismo , Osteoblastos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Líquido Sinovial/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Cultivadas , Anciano , Persona de Mediana Edad , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Cartílago/metabolismo , Cartílago/patología , Artropatías/metabolismo , Artropatías/patología , Artropatías/genética
15.
Front Cell Dev Biol ; 12: 1434381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129788

RESUMEN

Alcohol, a toxic and psychoactive substance with addictive properties, severely impacts life quality, leading to significant health, societal, and economic consequences. Its rapid passage across the blood-brain barrier directly affects different brain cells, including astrocytes. Our recent findings revealed the involvement of pannexin-1 (Panx1) and connexin-43 (Cx43) hemichannels in ethanol-induced astrocyte dysfunction and death. However, whether ethanol influences mitochondrial function and morphology in astrocytes, and the potential role of hemichannels in this process remains poorly understood. Here, we found that ethanol reduced basal mitochondrial Ca2+ but exacerbated thapsigargin-induced mitochondrial Ca2+ dynamics in a concentration-dependent manner, as evidenced by Rhod-2 time-lapse recordings. Similarly, ethanol-treated astrocytes displayed increased mitochondrial superoxide production, as indicated by MitoSox labeling. These effects coincided with reduced mitochondrial membrane potential and increased mitochondrial fragmentation, as determined by MitoRed CMXRos and MitoGreen quantification, respectively. Crucially, inhibiting both Cx43 and Panx1 hemichannels effectively prevented all ethanol-induced mitochondrial abnormalities in astrocytes. We speculate that exacerbated hemichannel activity evoked by ethanol may impair intracellular Ca2+ homeostasis, stressing mitochondrial Ca2+ with potentially damaging consequences for mitochondrial fusion and fission dynamics and astroglial bioenergetics.

16.
Biomed Pharmacother ; 178: 117278, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116784

RESUMEN

BACKGROUND: Empagliflozin (EMPA), a selective sodium-glucose cotransporter type 2 (SGLT2) inhibitor, has been shown to reduce major adverse cardiovascular events in patients with heart failure of different etiologies, although the underlying mechanism still remains unclear. Ponatinib (PON) is a multi-tyrosine kinase inhibitor successfully used against myeloid leukemia and other human malignancies, but its cardiotoxicity remains worrisome. Cardiac connexins (Cxs) are both substrates and regulators of autophagy and responsible for proper heart function. Alteration in connexin expression and localization have been described in patients with heart failure. AIMS: To assess whether EMPA can mitigate PON-induced cardiac dysfunction by restoring the connexin 43-autophagy pathway. METHODS AND RESULTS: Male C57BL/6 mice, randomized into four treatment groups (CNTRL, PON, EMPA, PON+EMPA) for 28 days, showed increased autophagy, decreased Cx43 expression as well as Cx43 lateralization, and attenuated systo-diastolic cardiac dysfunction after treatment with EMPA and PON compared with PON alone. Compared with CNTRL (DMSO), cardiomyocyte-differentiated H9c2 (dH9c2) cells treated with PON showed significantly reduced cell viability to approximately 20 %, decreased autophagy, increased cell senescence and reduced DNA binding activity of serum response factor (SRF) to serum response elements (SRE), which were paralleled by reduction in cardiac actin expression. Moreover, PON induced a significant increase of Cx43 protein and its S368-phosphorylated form (pS368-Cx43), as well as their displacement from the plasma membrane to the perinuclear and nuclear cellular region. All these effects were reverted by EMPA. CONCLUSION: EMPA attenuates PON-induced cardiotoxicity by reducing senescence, enhancing the SRE-SRF binding and restoring the connexin 43-autophagy pathway. This effect may pave the way to use of SGLT2 inhibitors in attenuating tyrosine-kinase inhibitor cardiotoxicity.


Asunto(s)
Autofagia , Compuestos de Bencidrilo , Cardiotoxicidad , Conexina 43 , Glucósidos , Imidazoles , Miocitos Cardíacos , Piridazinas , Animales , Masculino , Ratones , Ratas , Autofagia/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Cardiotoxicidad/etiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Conexina 43/metabolismo , Glucósidos/farmacología , Imidazoles/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Piridazinas/farmacología , Transducción de Señal/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
17.
J Immunol Methods ; 533: 113741, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111361

RESUMEN

Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Macrófagos , Conexina 43/metabolismo , Conexina 43/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Animales , Uniones Comunicantes/metabolismo , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Comunicación Celular , Western Blotting , Técnica del Anticuerpo Fluorescente , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-39213056

RESUMEN

OBJECTIVE: Our prior research has established that X-ray exposure induces pyroptosis in human umbilical vein endothelial cells (HUVECs), with Cx43 playing a regulatory role in this process. However, the precise mechanism by which Cx43 regulates pyroptosis remains unclear. The objective of this study is to assess the involvement of the calcium signaling pathway in Cx43-mediated regulation of X-ray-induced pyroptosis in HUVECs. METHODS: HUVECs were exposed to 10 Gy X-ray radiation either alone or combined with Cx43 overexpression or knockdown. Calcium ions (Ca2+) were stained using Fluo-4/AM and analyzed via flow cytometry and confocal microscopy. Pyroptosis was assessed through flow cytometry by staining with FLICA (fluorescent-labeled inhibitor of caspase) and propidium iodide (PI). Calcium signaling was inhibited using BAPTA/AM, 2-APB, or nifedipine. Protein expression levels were assessed by western blotting. RESULTS: X-ray irradiation induced an increase in intracellular calcium levels in HUVECs in a dose- and time-dependent manner. The results demonstrated that regulating calcium release with BAPTA/AM, 2-APB, or nifedipine significantly reduced pyroptosis. Also, the overexpression of Cx43 significantly attenuated the increase in intracellular calcium. Conversely, Cx43 knockdown via siRNA significantly increased the intracellular calcium levels. Also, interfering with calcium signaling using BAPTA/AM, 2-APB, or nifedipine reduced the raised pyroptosis levels induced by Cx43 knockdown. CONCLUSION: Individual HUVECs exposed to high-dose X-ray irradiation exhibited an increase in intracellular calcium, leading to pyroptosis. Also, upregulating Cx43 expression reduced the pyroptosis levels by inhibiting intracellular calcium concentration. This study introduces new concepts for identifying targets for the prophylaxis and therapy of radiation-induced damage.

19.
Life Sci ; 355: 122988, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153595

RESUMEN

Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.


Asunto(s)
Astrocitos , Conexina 43 , Trastorno Depresivo Mayor , Plasticidad Neuronal , Humanos , Astrocitos/metabolismo , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Plasticidad Neuronal/fisiología , Animales , Conexina 43/metabolismo , Transmisión Sináptica/fisiología , Ácido Glutámico/metabolismo , Neuroglía/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
20.
Cancer Innov ; 3(4): e128, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38948248

RESUMEN

Background: Increasing evidence has shown that connexins are involved in the regulation of tumor development, immune escape, and drug resistance. This study investigated the gene expression patterns, prognostic values, and potential mechanisms of connexins in breast cancer. Methods: We conducted a comprehensive analysis of connexins using public gene and protein expression databases and clinical samples from our institution. Connexin mRNA expressions in breast cancer and matched normal tissues were compared, and multiomics studies were performed. Results: Gap junction beta-2 mRNA was overexpressed in breast cancers of different pathological types and molecular subtypes, and its high expression was associated with poor prognosis. The tumor membrane of the gap junction beta-2 mutated group was positive, and the corresponding protein was expressed. Somatic mutation and copy number variation of gap junction beta-2 are rare in breast cancer. The gap junction beta-2 transcription level in the p110α subunit of the phosphoinositide 3-kinase mutant subgroup was higher than that in the wild-type subgroup. Gap junction beta-2 was associated with the phosphoinositide 3-kinase-Akt signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and proteoglycans in cancer. Furthermore, gap junction beta-2 overexpression may be associated with phosphoinositide 3-kinase and histone deacetylase inhibitor resistance, and its expression level correlated with infiltrating CD8+ T cells, macrophages, neutrophils, and dendritic cells. Conclusions: Gap junction beta-2 may be a promising therapeutic target for targeted therapy and immunotherapy and may be used to predict breast cancer prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA