Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38594622

RESUMEN

With the advent of the modern era, there is a huge demand for memristor-based neuromorphic computing hardware to overcome the von Neumann bottleneck in traditional computers. Here, we have prepared two-dimensional titanium carbide (Ti3C2Tx) MXene following the conventional HF etching technique in solution. After confirmation of Ti3C2Tx properties by Raman scattering and crystallinity measurements, high-quality thin-film deposition is realized using an immiscible liquid-liquid interfacial growth technique. Following this, the memristor is fabricated by sandwiching a Ti3C2Tx layer with a thickness of 70 nm between two electrodes. Subsequently, current-voltage (I-V) characteristics are measured, revealing a nonvolatile resistive switching property characterized by a swift switching speed of 30 ns and an impressive current On/Off ratio of approximately 103. Furthermore, it exhibits endurance through 500 cycles and retains the states for at least 1 × 104 s without observable degradation. Additionally, it maintains a current On/Off ratio of about 102 while consuming only femtojoules (fJ) of electrical energy per reading. Systematic I-V results and conductive AFM-based current mapping image analysis are converged to support the electroforming mediated filamentary conduction mechanism. Furthermore, our Ti3C2Tx memristor was found to be truly versatile as an all-in-one device for demonstrating edge computation, logic gate operation, and classical conditioning of learning by the brain in Psychology.

2.
Small ; 20(29): e2309216, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38334248

RESUMEN

An effective synthesis of conductive polymer brushes, i.e., self-templating surface-initiated copolymerization (ST-SICP), is developed. It proceeds through copolymerization of pendant thiophene groups in the precursor multimonomer poly(3-methylthienyl methacrylate) (PMTM) brushes with free 3-methylthiophene (3MT) monomers leading to PMTM-co-P3MT brushes. This approach leads to improved conformational freedom of generated conjugated poly(thiophene)-based chains and their higher share in the brushes with respect to conjugation of pendant thiophene groups only. As a result, best performing conjugated PMTM-co-P3MT brushes demonstrate high ohmic conductivity in both out-of-plane and in-plane direction. Furthermore, thanks to the covalent anchoring as well as intra- and intermolecular connections, highly stable and mechanically robust nanocoatings are produced which can survive mechanical cleaning and long-term storage under ambient conditions. Grafting of ionic poly(sodium 4-styrenesulfonate) (PSSNa) in between PMTM-co-P3MT chains brings new properties to such binary mixed brushes that can operate as thin-film memristive coating with switchable conductance. It is worth mentioning that the crucial synthetic steps, i.e., grafting of precursor PMTM brushes by surface-initiated organocatalyzed atom transfer radical polymerization (SI-O-ATRP) and PSSNa chains by surface-initiated photoiniferter-mediated polymerization (SI-PIMP) are conducted under ambient conditions using only microliter volumes of reagents providing methodology that can be considered for use beyond the laboratory scale.

3.
ACS Nano ; 18(3): 1948-1957, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207107

RESUMEN

Ionic movement has received renewed attention in recent years, particularly in the field of ferroelectric oxides, since it is intrinsically linked to chemical reaction kinetics and ferroelectric phase stability. The associated surface electrochemical processes coupled local ionic transport with an applied electric bias, exhibiting very high ionic mobility at room temperature based on a simple electrostatics scenario. However, few studies have focused on the applied-polarity dependence of ionic migration with directly visualized maps. Here, we use incorporated experiments of conductive scanning probe microscopy and time-of-flight secondary ion mass spectrometry to investigate oxygen ionic migration and cation redistribution in ionic oxides. The local concentrations of oxygen vacancies and other cation species are visualized by three-dimensional mappings, indicating that oxygen vacancies tend to be ejected toward the surface. An accumulation of oxygen vacancies and ionic redistribution strongly depend on tip polarity, thus corroborating their role in the electrochemical process. This work illustrates the interplay between ionic kinetics and electric switching.

4.
Biosens Bioelectron ; 240: 115664, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689016

RESUMEN

Oxidative stress and excessive accumulation of the superoxide (O2.-) anion are at the genesis of many pathological conditions and the onset of several diseases. The real time monitoring of (O2.-) release is important to assess the extent of oxidative stress in these conditions. Herein, we present the design, fabrication and characterization of a robust (O2.-) biosensor using a simple and straightforward procedure involving deposition of a uniform layer of L-Cysteine on a gold wire electrode to which Cytochrome C (Cyt c) was conjugated. The immobilized layers, studied using conductive Atomic Force Microscopy (c-AFM) revealed a stable and uniformly distributed redox protein on the gold surface, visualized as conductivity and surface topographical plots. The biosensor enabled detection of (O2.-) at an applied potential of 0.15 V with a sensitivity of 42.4 nA/µM and a detection limit of 2.4 nM. Utility of the biosensor was demonstrated in measurements of real time (O2.-) release in activated human blood platelets and skeletal rat limb muscles following ischemia reperfusion injury (IRI), confirming the biosensor's stability and robustness for measurements in complex biological systems. The results demonstrate the ability of these biosensors to monitor real time release of (O2.-) and estimate the extent of oxidative injury in models that could easily be translated to human pathologies.


Asunto(s)
Técnicas Biosensibles , Citocromos c , Humanos , Animales , Ratas , Superóxidos , Plaquetas , Oro , Músculo Esquelético
5.
Nano Lett ; 22(15): 6215-6222, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852915

RESUMEN

In a two-dimensional moiré superlattice, the atomic reconstruction of constituent layers could introduce significant modifications to the lattice symmetry and electronic structure at small twist angles. Here, we employ conductive atomic force microscopy to investigate a twisted trilayer graphene double-moiré superlattice. Two sets of moiré superlattices are observed. At neighboring domains of the large moiré, the current exhibits either 2- or 6-fold rotational symmetry, indicating delicate symmetry breaking beyond the rigid model. Moreover, an anomalous current appears at the "A-A" stacking site of the larger moiré, contradictory to previous observations on twisted bilayer graphene. Both behaviors can be understood by atomic reconstruction, and we also show that the measured current is dominated by the tip-graphene contact resistance that maps the local work function qualitatively. Our results reveal new insights of atomic reconstruction in novel moiré superlattices and opportunities for manipulating exotic quantum states on the basis of twisted van der Waals heterostructures.

6.
ACS Nano ; 16(4): 6309-6316, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35324162

RESUMEN

Atomically thin two-dimensional (2D) semiconductors are promising for next-generation memory to meet the scaling down of semiconductor industry. However, the controllability of carrier trapping status, which is the key figure of merit for memory devices, still halts the application of 2D semiconductor-based memory. Here, we introduce a scheme for 2D material based memory using wrinkles in monolayer 2D semiconductors as controllable carrier trapping centers. Memory devices based on wrinkled monolayer MoS2 show multilevel storage capability, an on/off ratio of 106, and a retention time of >104 s, as well as tunable linear and exponential behaviors at the stimulation of different gate voltages. We also reveal an interesting wrinkle-based carrier trapping mechanism by using conductive atomic force microscopy. This work offers a configuration to control carriers in ultrathin memory devices and for in-memory calculations.

7.
Nanomaterials (Basel) ; 11(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835866

RESUMEN

Polyamide 66 (PA66) is a well-known engineering thermoplastic polymer, primarily employed in polymer composites with fillers and additives of different nature and dimensionality (1D, 2D and 3D) used as alternatives to metals in various technological applications. In this work, carbon black (CB), a conductive nanofiller, was used to reinforce the PA66 polymer in the 9-27 wt. % CB loading range. The reason for choosing CB was intrinsically associated with its nature: a nanostructured carbon filler, whose agglomeration characteristics affect the electrical properties of the polymer composites. Crystallinity, phase composition, thermal behaviour, morphology, microstructure, and electrical conductivity, which are all properties engendered by nanofiller dispersion in the polymer, were investigated using thermal analyses (thermogravimetry and differential scanning calorimetry), microscopies (scanning electron and atomic force microscopies), and electrical conductivity measurements. Interestingly, direct current (DC) electrical measurements and conductive-AFM mapping through the samples enable visualization of the percolation paths and the ability of CB nanoparticles to form aggregates that work as conductive electrical pathways beyond the electrical percolation threshold. This finding provides the opportunities to investigate the degree of filler dispersion occurring during the transformation processes, while the results of the electrical properties also contribute to enabling the use of such conductive composites in sensor and device applications. In this regard, the results presented in this paper provide evidence that conductive carbon-filled polymer composites can work as touch sensors when they are connected with conventional low-power electronics and controlled by inexpensive and commercially available microcontrollers.

8.
Ultramicroscopy ; 218: 113081, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32739754

RESUMEN

Local electrical properties of thin films of the polymer PTB7 are studied by conductive atomic force microscopy (C-AFM). Non-uniform nanoscale current distribution in the neat PTB7 film is revealed and connected with the existence of ordered PTB7 crystallites. The shape of local I-V curves is explained by the presence of space charge limited current. We modify an existing semi-empirical model for estimation of the nanoscale hole mobility from our experimental C-AFM measurements. The procedure of nanoscale charge mobility estimation was described and applied to the PTB7 films. The calculated average C-AFM hole mobility is in good agreement with macroscopic values reported for this material. Mapping of nanoscale hole mobility was achieved using the described procedure. Local mobility values, influenced by nanoscale structure, vary more than two times in value and have a root-mean-square value 0.22 × 10-8 m2/(Vs), which is almost 20% from average hole mobility.

9.
Adv Biosyst ; 4(7): e2000006, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449305

RESUMEN

Cable bacteria are an emerging class of electroactive organisms that sustain unprecedented long-range electron transport across centimeter-scale distances. The local pathways of the electrical currents in these filamentous microorganisms remain unresolved. Here, the electrical circuitry in a single cable bacterium is visualized with nanoscopic resolution using conductive atomic force microscopy. Combined with perturbation experiments, it is demonstrated that electrical currents are conveyed through a parallel network of conductive fibers embedded in the cell envelope, which are electrically interconnected between adjacent cells. This structural organization provides a fail-safe electrical network for long-distance electron transport in these filamentous microorganisms. The observed electrical circuit architecture is unique in biology and can inspire future technological applications in bioelectronics.


Asunto(s)
Bacterias/química , Conductividad Eléctrica
10.
ACS Nano ; 14(4): 4550-4558, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167748

RESUMEN

Van der Waals layered materials, such as transition metal dichalcogenides (TMDs), are an exciting class of materials with weak interlayer bonding, which enables one to create so-called van der Waals heterostructures (vdWH). One promising attribute of vdWH is the ability to rotate the layers at arbitrary azimuthal angles relative to one another. Recent work has shown that control of the twist angle between layers can have a dramatic effect on TMD vdWH properties, but the twist angle has been treated solely through the use of rigid-lattice moiré patterns. No atomic reconstruction, that is, any rearrangement of atoms within the individual layers, has been reported experimentally to date. Here, we demonstrate that vdWH of MoSe2/WSe2 and MoS2/WS2 at twist angles ≤1° undergo significant atomic level reconstruction leading to discrete commensurate domains divided by narrow domain walls, rather than a smoothly varying rigid-lattice moiré pattern as has been assumed in prior experimental work. Using conductive atomic force microscopy (CAFM), we show that TMD vdWH at small twist angles exhibit large domains of constant conductivity. The domains in samples with R-type stacking are triangular, whereas the domains in samples with H-type stacking are hexagonal. Transmission electron microscopy provides additional evidence of atomic reconstruction in MoSe2/WSe2 structures and demonstrates the transition between a rigid-lattice moiré pattern for large angles and atomic reconstruction for small angles. We use density functional theory to calculate the band structures of the commensurate reconstructed domains and find that the modulation of the relative electronic band edges is consistent with the CAFM results and photoluminescence spectra. The presence of atomic reconstruction in TMD heterostructures and the observed impact on nanometer-scale electronic properties provide fundamental insight into the behavior of this important class of heterostructures.

11.
ACS Appl Mater Interfaces ; 12(8): 9580-9588, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31999089

RESUMEN

We report the synthesis of high-quality single monolayer MoS2 samples using a novel technique that utilizes direct liquid injection (DLI) for the delivery of precursors. The DLI system vaporizes a liquid consisting of a selected precursor dissolved in a solvent into small, micron-sized droplets in an expansion chamber maintained at a selected temperature and pressure, before delivery to the deposition chamber. We demonstrate the synthesis of monolayer MoS2 on SiO2/Si substrates using the DLI technique with film quality superior to exfoliated samples or those grown by traditional tube furnace chemical vapor deposition (CVD) methods. Photoluminescence measurements of DLI monolayers exhibit consistently brighter emission, narrower line width, and higher emission energy than their exfoliated and CVD counterparts. Conductive atomic force microscopy identifies a defect density of 8.3 × 1011/cm2 in DLI MoS2, lower than the measured density in CVD material and nearly an order of magnitude improvement over the exfoliated MoS2 investigated under the same conditions. The DLI method is directly applicable to many other van der Waals materials, which require the use of challenging low vapor pressure precursors, to the growth of alloys, and sequential growths of dissimilar materials leading to van der Waals heterostructures.

12.
ACS Nano ; 13(9): 10448-10455, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31441643

RESUMEN

Transition metal dichalcogenides (TMDs) exhibit promising catalytic properties for hydrogen generation, and several approaches including defect engineering have been shown to increase the active catalytic sites. Despite preliminary understandings in defect engineering, insights on the role of various types of defects in TMDs for hydrogen evolution catalysis are limited. Screw dislocation-driven (SDD) growth is a line defect and yields fascinating spiral and pyramidal morphologies for TMDs with a large number of edge sites, resulting in very interesting electronic and catalytic properties. The role of dislocation lines and edge sites of these spiral structures on their hydrogen evolution catalytic properties is unexplored. Here we show that the large number of active edge sites connected together by dislocation lines in the vertical direction for a spiral WS2 domain results in exceptional catalytic properties toward hydrogen evolution reaction. A micro-electrochemical cell fabricated by photo- and electron beam-lithography processes is used to study the electrocatalytic activity of a single spiral WS2 domain, controllably grown by chemical vapor deposition. Conductive atomic force microscopy studies show improved vertical conduction for the spiral domain, which is compared with monolayer and mechanically exfoliated thick WS2 flakes. The obtained results are interesting and shed light on the role of SDD line defects, which contribute to large number of edge sites without compromising the vertical electrical conduction, on the electrocatalytic properties of TMDs for hydrogen evolution.

13.
Small ; 15(48): e1902099, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31265215

RESUMEN

Scanning probe microscopy techniques providing information on conductivity, chemical fluxes, and interfacial reactivity synchronized with topographical information have gained importance within the last decades. Herein, a novel colloidal atomic force microscopy (AFM) probe is presented using a spherical boron-doped diamond (BDD) electrode attached and electrically connected to a modified silicon nitride cantilever. These conductive spherical BDD-AFM probes allow for electrochemical force spectroscopy. The physical robustness of these bifunctional probes, and the excellent electrochemical properties of BDD renders this concept a unique multifunctional tool for a wide variety of scanning probe studies including conductive AFM, hybrid atomic force-scanning electrochemical microscopy, and tip-integrated chem/bio sensing.

14.
Small ; 14(39): e1802023, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30118585

RESUMEN

Materials with reconfigurable optical properties are candidates for applications such as optical cloaking and wearable sensors. One approach to fabricate these materials is to use external fields to form and dissolve nanoscale conductive channels in well-defined locations within a polymer. In this study, conductive atomic force microscopy is used to electrochemically form and dissolve nanoscale conductive filaments at spatially distinct points in a polyethylene glycol diacrylate (PEGDA)-based electrolyte blended with varying amounts of ionic liquid (IL) and silver salt. The fastest filament formation and dissolution times are detected in a PEGDA/IL composite that has the largest modulus (several GPa) and the highest polymer crystal fraction. This is unexpected because filament formation and dissolution events are controlled by ion transport, which is typically faster within amorphous regions where polymer mobility is high. Filament kinetics in primarily amorphous and crystalline regions are measured, and two different mechanisms are observed. The formation time distributions show a power-law dependence in the crystalline regions, attributable to hopping-based ion transport, while amorphous regions show a normal distribution. The results indicate that the timescale of filament formation/dissolution is determined by local structure, and suggest that structure could be used to tune the optical properties of the film.

15.
Beilstein J Nanotechnol ; 9: 1802-1808, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977713

RESUMEN

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.

16.
ACS Appl Mater Interfaces ; 10(15): 13218-13225, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29578328

RESUMEN

Here, we report on the surface conductivity of WSe2 and Mo xW1- xSe2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe2, in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of Mo xW1- xSe2, its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys.

17.
ACS Appl Mater Interfaces ; 10(9): 8092-8101, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29424523

RESUMEN

Ionic transport and electrochemical reactions underpin the functionality of the memory devices. NiO, as a promising transition metal oxide for developing resistive switching random access memory, has been extensively explored in the terms of the resistive switching. However, there is limited experimental evidence to visualize the ionic processes of the NiO under the external electrical field. In addition, the correlation between the ionic processes and the resistive switching has not been established. To close this gap and also to determine the role of the ionic processes in resistive switching of the NiO, in this study, a series of scanning probe microscopy techniques, including electrochemical strain microscopy (ESM), conductive atomic force microscopy, Kelvin probe force microscopy, and a newly developed first-order reversal curve-IV, are employed to measure the ESM response, the resistive switching performance, the work function, and the ionic dynamics of NiO, respectively. The results in this work have clearly visualized the ionic transport and electrochemical reactions of NiO when subjected to the electrical field. It has been found that the ionic processes and the resistive switching accompanied each other. Furthermore, it is found that the electrochemical reactions play a determinative role in the resistive switching of the NiO, and this electrochemically induced resistive switching performance can be explained by an integrated mechanism that has combined the filamentary and the interfacial effects underlying resistive switching. In addition to providing a better understanding of the resistive switching of NiO, this work also provides effective methods to probe the ionic processes and to correlate these ionic processes to the performance of functional materials.

18.
Beilstein J Nanotechnol ; 8: 2069-2082, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29090109

RESUMEN

Bioinspired design has been central in the development of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties, as well as gas-barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has also been utilized in sensing devices. Here we extend the multifunctionality of nacre-mimetics by designing an optically transparent and electron conductive coating based on PEDOT:PSS and nanoclays Laponite RD and Cloisite Na+. We carry out extensive characterization of the nanocomposite using transmittance spectra (transparency), conductive atomic force microscopy (conductivity), contact-resonance force microscopy (mechanical properties), and SEM combined with a variety of stress-strain AFM experiments and AFM numerical simulations (internal structure). We further study the nanoclay's response to the application of pressure with multifrequency AFM and conductive AFM, whereby increases and decreases in conductivity can occur for the Laponite RD composites. We offer a possible mechanism to explain the changes in conductivity by modeling the coating as a 1-dimensional multibarrier potential for electron transport, and show that conductivity can change when the separation between the barriers changes under the application of pressure, and that the direction of the change depends on the energy of the electrons. We did not observe changes in conductivity under the application of pressure with AFM for the Cloisite Na+ nanocomposite, which has a large platelet size compared with the AFM probe diameter. No pressure-induced changes in conductivity were observed in the clay-free polymer either.

19.
ACS Appl Mater Interfaces ; 9(46): 39895-39900, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29110457

RESUMEN

Large-area hexagonal boron nitride (h-BN) can be grown on polycrystalline metallic substrates via chemical vapor deposition (CVD), but the impact of local inhomogeneities on the electrical properties of the h-BN and their effect in electronic devices is unknown. Conductive atomic force microscopy (CAFM) and probe station characterization show that the tunneling current across the h-BN stack fluctuates up to 3 orders of magnitude from one substrate (Pt) grain to another. Interestingly, the variability in the tunneling current across the h-BN within the same substrate grain is very low, which may enable the use of CVD-grown h-BN in ultra scaled technologies.

20.
Materials (Basel) ; 10(11)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104271

RESUMEN

In this work, we have studied the microstructures, nanodomains, polarization preservation behaviors, and electrical properties of BiFe0.95Mn0.05O3 (BFMO) multiferroic thin films, which have been epitaxially created on the substrates of SrRuO3, SrTiO3, and TiN-buffered (001)-oriented Si at different oxygen pressures via piezoresponse force microscopy and conductive atomic force microscopy. We found that the pure phase state, inhomogeneous piezoresponse force microscopy (PFM) response, low leakage current with unidirectional diode-like properties, and orientation-dependent polarization reversal properties were found in BFMO thin films deposited at low oxygen pressure. Meanwhile, these films under high oxygen pressures resulted in impurities in the secondary phase in BFMO films, which caused a greater leakage that hindered the polarization preservation capability. Thus, this shows the important impact of the oxygen pressure on modulating the physical effects of BFMO films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA