Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Genet ; 15: 1412767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948355

RESUMEN

Introduction: The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that Ehmt2 inactivation in the mouse pancreas alters growth and immune gene expression networks, antagonizing Kras-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of Ehmt2 in maintaining a transcriptional landscape that protects organs from inflammation. Methods: Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from Ehmt2 conditional knockout animals (Ehmt2 fl/fl ) targeted to the exocrine pancreatic epithelial cells (Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the Ehmt2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. Results and discussion: The Ehmt2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional Ehmt2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific Ehmt2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the Ehmt2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.

2.
Elife ; 122024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856715

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.


Asunto(s)
Supervivencia Celular , Neuronas Dopaminérgicas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones Noqueados , Animales , Neuronas Dopaminérgicas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Apoptosis
3.
eNeuro ; 11(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777609

RESUMEN

The Cre-lox system is an indispensable tool in neuroscience research for targeting gene deletions to specific cellular populations. Here we assess the utility of several transgenic Cre lines, along with a viral approach, for targeting cerebellar Purkinje cells (PCs) in mice. Using a combination of a fluorescent reporter line (Ai14) to indicate Cre-mediated recombination and a floxed Dystroglycan line (Dag1flox ), we show that reporter expression does not always align precisely with loss of protein. The commonly used Pcp2Cre line exhibits a gradual mosaic pattern of Cre recombination in PCs from Postnatal Day 7 (P7) to P14, while loss of Dag1 protein is not complete until P30. Ptf1aCre drives recombination in precursor cells that give rise to GABAergic neurons in the embryonic cerebellum, including PCs and molecular layer interneurons. However, due to its transient expression in precursors, Ptf1aCre results in stochastic loss of Dag1 protein in these neurons. NestinCre , which is often described as a "pan-neuronal" Cre line for the central nervous system, does not drive Cre-mediated recombination in PCs. We identify a Calb1Cre line that drives efficient and complete recombination in embryonic PCs, resulting in loss of Dag1 protein before the period of synaptogenesis. AAV8-mediated delivery of Cre at P0 results in gradual transduction of PCs during the second postnatal week, with loss of Dag1 protein not reaching appreciable levels until P35. These results characterize several tools for targeting conditional deletions in cerebellar PCs at different developmental stages and illustrate the importance of validating the loss of protein following recombination.


Asunto(s)
Integrasas , Ratones Transgénicos , Células de Purkinje , Animales , Células de Purkinje/metabolismo , Integrasas/genética , Ratones , Recombinación Genética , Alelos , Eliminación de Gen , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Ratones Endogámicos C57BL , Factores de Transcripción
4.
Cell Mol Life Sci ; 80(8): 211, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37462735

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with a low survival rate due to a lack of therapeutic targets. Here, our results showed that nuclear mitotic apparatus protein 1 (NUMA1) transcript and protein levels are significantly upregulated in ESCC patient samples and its high expression predicated poor prognosis. Knock-down of NUMA1 promoted cell apoptosis and suppressed cell proliferation and colony formation. By using cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice models, we found silencing the NUMA1 expression suppressed tumor progression. In addition, conditional knocking-out of NUMA1 reduced 4NQO-induced carcinogenesis in mice esophagus, which further confirmed the oncogenic role of NUMA1 in ESCC. Mechanistically, from the immunoprecipitation assay we revealed that NUMA1 interacted with GSTP1 and TRAF2, promoted the association of TRAF2 with GSTP1 while inhibited the interaction of TRAF2 and ASK1, thus to regulate sustained activation of JNK. In summary, our findings suggest that NUMA1 plays an important role during ESCC progression and it functions through regulating ASK1-MKK4-SAPK/JNK signaling pathway.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/genética , Sistema de Señalización de MAP Quinasas , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Factor 2 Asociado a Receptor de TNF/metabolismo , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Anim Cells Syst (Seoul) ; 27(1): 93-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999135

RESUMEN

Cytoplasmic FMR1-interacting protein 2 (CYFIP2) is an evolutionarily conserved multifunctional protein that regulates the neuronal actin cytoskeleton, mRNA translation and transport, and mitochondrial morphology and function. Supporting its critical roles in proper neuronal development and function, human genetic studies have repeatedly identified variants of the CYFIP2 gene in individuals diagnosed with neurodevelopmental disorders. Notably, a few recent studies have also suggested a mechanistic link between reduced CYFIP2 level and Alzheimer's disease (AD). Specifically, in the hippocampus of 12-month-old Cyfip2 heterozygous mice, several AD-like pathologies were identified, including increased levels of Tau phosphorylation and gliosis, and loss of dendritic spines in CA1 pyramidal neurons. However, detailed pathogenic mechanisms, such as cell types and their circuits where the pathologies originate, remain unknown for AD-like pathologies caused by CYFIP2 reduction. In this study, we aimed to address this issue by examining whether the cell-autonomous reduction of CYFIP2 in CA1 excitatory pyramidal neurons is sufficient to induce AD-like phenotypes in the hippocampus. We performed immunohistochemical, morphological, and biochemical analyses in 12-month-old Cyfip2 conditional knock-out mice, which have postnatally reduced CYFIP2 expression level in CA1, but not in CA3, excitatory pyramidal neurons of the hippocampus. Unexpectedly, we could not find any significant AD-like phenotype, suggesting that the CA1 excitatory neuron-specific reduction of CYFIP2 level is insufficient to lead to AD-like pathologies in the hippocampus. Therefore, we propose that CYFIP2 reduction in other neurons and/or their synaptic connections with CA1 pyramidal neurons may be critically involved in the hippocampal AD-like phenotypes of Cyfip2 heterozygous mice.

6.
Methods Mol Biol ; 2637: 161-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773146

RESUMEN

The Cre/loxP system is a versatile and powerful tool that has been used to develop many kinds of genetically modified mice, such as conditional knockout mice and mutant protein-expressing mice through the excision of a STOP cassette. However, while numerous in vivo and in vitro applications of the Cre/loxP system have been reported, it remains difficult to target at one time more than one set of recognition sites in an identical single cell in mice using the Cre/loxP system. To overcome this barrier, we developed two novel site-specific recombination systems called VCre/VloxP and SCre/SloxP. These systems allow multiple independent site-specific recombination, for example, multiple targeted deletions in the same cell at different times. In this chapter, I describe the features of VCre/VloxP and SCre/SloxP, practical protocols and tips on how to use them in genomic engineering applications, potential problems in their use, and how problems can be identified and solved.


Asunto(s)
Genoma , Integrasas , Ratones , Animales , Integrasas/genética , Ratones Noqueados , Genómica , Recombinación Genética
7.
Chinese Pharmacological Bulletin ; (12): 1320-1324, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013755

RESUMEN

Aim To build the model of the gene FKBP38(FK506 binding protein 38)conditional knock out in uterus and then investigate the effect on endometrial precancerous lesions and the underlying mechanism.Methods Transgenic mice whose FKBP38 gene was flanked with loxP were constructed by embryo microinjection. The conditional knockout of FKBP38 was obtained by breeding mice harboring two loxP sites in FKBP38(FKBP38

8.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499089

RESUMEN

Non-obstructive azoospermia is a major clinical issue associated with male infertility that remains to be addressed. Although neogenin is reportedly abundantly expressed in the testis, its role in mammalian spermatogenesis is unknown. We systematically investigated the role of neogenin during spermatogenesis by performing loss-of-function studies. Testis-specific neogenin conditional knock-out (cKO) mice were generated using CRISPR/Cas9 and neogenin-targeting guide RNAs. We analyzed the expression profiles of germ cell factors by RT-PCR and Western blotting. Neogenin localized mainly to spermatogonia in seminiferous tubules of mouse testes. RT-PCR and Western blot analyses further demonstrated that neogenin expression varied during spermatogenesis and was dramatically increased at postnatal day 12-25 during the pubertal stage. In neogenin-cKO mouse testes, the ratio of primary and secondary spermatocytes was significantly decreased compared with the control, while the number of apoptotic testicular cells was significantly increased. Taken together, these results suggest that neogenin plays a pivotal role in the maintenance and proliferation of spermatogonia during the early stage of spermatogenesis in mice.


Asunto(s)
Espermatogénesis , Espermatogonias , Humanos , Masculino , Ratones , Animales , Regulación hacia Abajo , Espermatogonias/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Diferenciación Celular/genética , Ratones Noqueados , Proliferación Celular , Mamíferos
9.
Front Mol Neurosci ; 15: 852171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782378

RESUMEN

Glycogen synthase kinase-3 (GSK3) mediates phosphorylation of several hundred proteins, and its aberrant activity is associated with an array of prevalent disorders. The two paralogs, GSK3α and GSK3ß, are expressed ubiquitously and fulfill common as well as unique tasks throughout the body. In the CNS, it is established that GSK3 is involved in synaptic plasticity. However, the relative roles of GSK3 paralogs in synaptic plasticity remains controversial. Here, we used hippocampal slices obtained from adult mice to determine the role of each paralog in CA3-CA1 long-term potentiation (LTP) of synaptic transmission, a form of plasticity critically required in learning and memory. Conditional Camk2a Cre-driven neuronal deletion of the Gsk3a gene, but not Gsk3b, resulted in enhanced LTP. There were no changes in basal synaptic function in either of the paralog-specific knockouts, including several measures of presynaptic function. Therefore, GSK3α has a specific role in serving to limit LTP in adult CA1, a postsynaptic function that is not compensated by GSK3ß.

10.
Mol Brain ; 15(1): 56, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715811

RESUMEN

Hippocampal CA1 parvalbumin-expressing interneurons (PV INs) play a central role in controlling principal cell activity and orchestrating network oscillations. PV INs receive excitatory inputs from CA3 Schaffer collaterals and local CA1 pyramidal cells, and they provide perisomatic inhibition. Schaffer collateral excitatory synapses onto PV INs express Hebbian and anti-Hebbian types of long-term potentiation (LTP), as well as elicit LTP of intrinsic excitability (LTPIE). LTPIE requires the activation of type 5 metabotropic glutamate receptors (mGluR5) and is mediated by downregulation of potassium channels Kv1.1. It is sensitive to rapamycin and thus may involve activation of the mammalian target of rapamycin complex 1 (mTORC1). LTPIE facilitates PV INs recruitment in CA1 and maintains an excitatory-inhibitory balance. Impaired CA1 PV INs activity or LTP affects network oscillations and memory. However, whether LTPIE in PV INs plays a role in hippocampus-dependent memory remains unknown. Here, we used conditional deletion of the obligatory component of mTORC1, the Regulatory-Associated Protein of mTOR (Raptor), to directly manipulate mTORC1 in PV INs. We found that homozygous, but not heterozygous, conditional knock-out of Rptor resulted in a decrease in CA1 PV INs of mTORC1 signaling via its downstream effector S6 phosphorylation assessed by immunofluorescence. In whole-cell recordings from hippocampal slices, repetitive firing of CA1 PV INs was impaired in mice with either homozygous or heterozygous conditional knock-out of Rptor. High frequency stimulation of Schaffer collateral inputs that induce LTPIE in PV INs of control mice failed to do so in mice with either heterozygous or homozygous conditional knock-out of Rptor in PV INs. At the behavioral level, mice with homozygous or heterozygous conditional knock-out of Rptor showed similar long-term contextual fear memory or contextual fear memory discrimination relative to control mice. Thus, mTORC1 activity in CA1 PV INs regulates repetitive firing and LTPIE but not consolidation of long-term contextual fear memory and context discrimination. Our results indicate that mTORC1 plays cell-specific roles in synaptic plasticity of hippocampal inhibitory interneurons that are differentially involved in hippocampus-dependent learning and memory.


Asunto(s)
Región CA1 Hipocampal , Miedo , Hipocampo , Interneuronas , Potenciación a Largo Plazo , Diana Mecanicista del Complejo 1 de la Rapamicina , Memoria , Parvalbúminas , Animales , Región CA1 Hipocampal/metabolismo , Miedo/fisiología , Hipocampo/metabolismo , Interneuronas/metabolismo , Potenciación a Largo Plazo/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria/fisiología , Ratones , Parvalbúminas/metabolismo , Sinapsis/metabolismo
11.
Genes Brain Behav ; 21(2): e12788, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35044072

RESUMEN

Evidence for a cerebellar role during cardiopulmonary challenges has long been established, but studies of cerebellar involvement in eupneic breathing have been inconclusive. Here we investigated temporal aspects of eupneic respiration in the Atoh1-En1/2 mouse model of cerebellar neuropathology. Atoh1-En1/2 conditional knockout mice have conditional loss of the developmental patterning genes Engrailed1 and 2 in excitatory cerebellar nuclear neurons, which leads to loss of a subset of medial and intermediate excitatory cerebellar nuclear neurons. A sample of three Atoh1-derived extracerebellar nuclei showed no cell loss in the conditional knockout compared to control mice. We measured eupneic respiration in mutant animals and control littermates using whole-body unrestrained plethysmography and compared the average respiratory rate, coefficient of variation, and the CV2, a measure of intrinsic rhythmicity. Linear regression analyses revealed that Atoh1-En1/2 conditional knockouts have decreased overall variability (p = 0.021; b = -0.045) and increased intrinsic rhythmicity compared to their control littermates (p < 0.001; b = -0.037), but we found no effect of genotype on average respiratory rate (p = 0.064). Analysis also revealed modestly decreased respiratory rates (p = 0.025; b = -0.82), increased coefficient of variation (p = 0.0036; b = 0.060), and increased CV2 in female animals, independent of genotype (p = 0.024; b = 0.026). These results suggest a cerebellar involvement in eupneic breathing by controlling rhythmicity. We argue that the cerebellar involvement in controlling the CV2 of respiration is indicative of an involvement of coordinating respiration with other orofacial rhythms, such as swallowing.


Asunto(s)
Cerebelo , Respiración , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso , Respiración/genética
12.
Exp Hematol Oncol ; 11(1): 1, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033195

RESUMEN

Paroxysmal nocturnal hemoglobinuria is a clonal disease caused by PIG-A mutation of hematopoietic stem cells. At present, there is no suitable PNH animal model for basic research, therefore, it is urgent to establish a stable animal model. We constructed a Pig-a conditional knock-out mice model by ES targeting technique and Vav-iCre. The expressions of GPI and GPI-AP were almost completely absent in CKO homozygote mice, and the proportion of the deficiency remained stable from birth. In CKO heterozygote mice, the proportion of the deficiency of GPI and GPI-AP was partially absent and decreased gradually from birth until it reached a stable level at 3 months after birth and remained there for life. Compared with normal C57BL/6N mice and Flox mice, pancytopenia was found in CKO homozygous mice, and leukopenia and anemia were found in CKO heterozygotes mice. Meanwhile, in CKO mice, the serum LDH, TBIL, IBIL, complement C5b-9 levels were increased, and the concentration of plasma FHb was increased. Hemosiderin granulosa cells can be seen more easily in the spleens of CKO mice. What's more, CKO mice had stable transcription characteristics. In conclusion, our mouse model has stable GPI-deficient and mild hemolysis, which may be an ideal in vivo experimental model for PNH.

13.
J Neurosci Res ; 99(10): 2625-2645, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212416

RESUMEN

The homeodomain transcription factors sine oculis homeobox 3 (Six3) and ventral anterior homeobox 1 (Vax1) are required for brain development. Their expression in specific brain areas is maintained in adulthood, where their functions are poorly understood. To identify the roles of Six3 and Vax1 in neurons, we conditionally deleted each gene using Synapsincre , a promoter targeting maturing neurons, and generated Six3syn and Vax1syn mice. Six3syn and Vax1syn females, but not males, had reduced fertility, due to impairment of the luteinizing hormone (LH) surge driving ovulation. In nocturnal rodents, the LH surge requires a precise timing signal from the brain's circadian pacemaker, the suprachiasmatic nucleus (SCN), near the time of activity onset. Indeed, both Six3syn and Vax1syn females had impaired rhythmic SCN output, which was associated with weakened Period 2 molecular clock function in both Six3syn and Vax1syn mice. These impairments were associated with a reduction of the SCN neuropeptide vasoactive intestinal peptide in Vax1syn mice and a modest weakening of SCN timekeeping function in both Six3syn and Vax1syn mice. Changes in SCN function were associated with mistimed peak PER2::LUC expression in the SCN and pituitary in both Six3syn and Vax1syn females. Interestingly, Six3syn ovaries presented reduced sensitivity to LH, causing reduced ovulation during superovulation. In conclusion, we have identified novel roles of the homeodomain transcription factors SIX3 and VAX1 in neurons, where they are required for proper molecular circadian clock function, SCN rhythmic output, and female fertility.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas del Ojo/metabolismo , Fertilidad/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Carrera/fisiología , Núcleo Supraquiasmático/metabolismo , Animales , Proteínas del Ojo/genética , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Neuropéptidos/genética , Proteína Homeobox SIX3
14.
Methods Mol Biol ; 2224: 1-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606203

RESUMEN

Recent development of Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR) that utilizes long single-stranded DNA (lssDNA) of 0.2-2 kbases in length as donor templates to insert large segments of novel DNA sequences or to replace endogenous genes at precise locations in the genome has enabled CRISPR-assisted genome editing to make strides toward a more simple and rapid workflow. By leveraging the notion that short single-stranded DNA oligo (<200 bases) serves as efficient donor in mouse zygotes for facilitating HDR-mediated genome editing, Easi-CRISPR expands to use lssDNA as the donor which accelerates the timeline to as little as 2 months for creating most types of genetically engineered mouse models (F0). Our lab (CGERC) has adopted Easi-CRISPR for multiple loci to generate mouse models over the past three plus years since its introduction. Here, we use two genes as examples to illustrate a step-by-step protocol for generating two commonly used models, including a knock-in (insertion of a reporter gene plus GOI) as well as a conditional knock-out model (via exon floxing). This protocol will focus more on molecular biology aspect, particularly we demonstrate two recently developed methods for lssDNA procuration: (1) PCR-based Takara Bio kit with modifications; (2) plasmid-retrieval-based CRISPR-CLIP (CRISPR-Clipped LssDNA via Incising Plasmid). Both methods are devised to retain sequence fidelity in lssDNA generated. In addition, CRISPR-CLIP directly retrieves lssDNA from DNA plasmid without using restriction enzymes through a PCR-free system hence carries virtually no restriction on sequence complexity, further mitigating limitations discussed in the original Easi-CRISPR protocol. We have alternated the use between both methods when suitable and successfully generated lssDNA templates via CRISPR-CLIP up to 3.5 kbases patched with multiple highly repetitive sequences, which is otherwise challenging to maneuver. Along with certain other modified workflow presented herein, Easi-CRISPR can be adapted to be more straightforward while applicable to generate mouse models in broader scope. (Certain figures and text passages presented in this chapter are reproduced from Shola et al. (The CRISPR J 3(2):109-122, 2020), published by Mary Ann Libert, Inc).


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN de Cadena Simple/genética , Animales , Exones/genética , Femenino , Edición Génica/métodos , Técnicas de Sustitución del Gen , Genes Reporteros/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , ARN Guía de Kinetoplastida/genética , Cigoto/fisiología
15.
Arch Biochem Biophys ; 697: 108680, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220265

RESUMEN

The study of calmodulin (CaM) functions in living cells has been tackled up to date using cell-permeant CaM inhibitors or interference-RNA methods. CaM inhibitors may lack specificity and the siRNA interference approach is challenging, as all three CaM genes expressing an identical protein in mammals have to be blocked. Therefore, we recently introduced a novel genetic system using CRISPR/Cas9-mediated gene deletion and conditional CaM expression to study the function of CaM in HeLa cells. Here, we describe the effect of CaM downregulation on the basal and epidermal growth factor (EGF)-dependent 2D- and 3D-migration in HeLa cells. CaM downregulation inhibited cell migration on a 2D-surface in the absence but not in the presence of EGF. In contrast, CaM downregulation led to inhibition of 3D-migration across a porous membrane both in the absence and presence of EGF. CaM downregulation decreased the expression of Rac1, Cdc42 and RhoA, all known to play crucial roles in cell migration. These results show that EGF-dependent 2D- and 3D-migration utilize distinct CaM-regulated systems and identify several essential migratory proteins directly or indirectly regulated by CaM.


Asunto(s)
Calmodulina/deficiencia , Calmodulina/genética , Movimiento Celular/genética , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Factor de Crecimiento Epidérmico/metabolismo , Células HeLa , Humanos , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
16.
Front Physiol ; 11: 601923, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192618

RESUMEN

During embryonic development, symmetric ectodermal thickenings [olfactory placodes (OP)] give rise to several cell types that comprise the olfactory system, such as those that form the terminal nerve ganglion (TN), gonadotropin releasing hormone-1 neurons (GnRH-1ns), and other migratory neurons in rodents. Even though the genetic heterogeneity among these cell types is documented, unidentified cell populations arising from the OP remain. One candidate to identify placodal derived neurons in the developing nasal area is the transcription factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well as expression in neurons of the nasal migratory mass (MM). Here, we analyzed the Isl1 genetic lineage in chemosensory neuronal populations in the nasal area and migratory GnRH-1ns in mice using in situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive Isl1Cre knock-in mouse lines. In addition, we also performed conditional Isl1 ablation in developing GnRH neurons. We found Isl1 lineage across non-sensory cells of the respiratory epithelium and sustentacular cells of OE and VNO. We identified a population of transient embryonic Isl1 + neurons in the olfactory epithelium and sparse Isl1 + neurons in postnatal VNO. Isl1 is expressed in almost all GnRH neurons and in approximately half of the other neuron populations in the MM. However, Isl1 conditional ablation alone does not significantly compromise GnRH-1 neuronal migration or GnRH-1 expression, suggesting compensatory mechanisms. Further studies will elucidate the functional and mechanistic role of Isl1 in development of migratory endocrine neurons.

17.
Front Mol Neurosci ; 13: 149, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132837

RESUMEN

A growing body of evidence indicates that microglia actively remove synapses in vivo, thereby playing a key role in synaptic refinement and modulation of brain connectivity. This phenomenon was mainly investigated in immunofluorescence staining and confocal microscopy. However, a quantification of synaptic material in microglia using these techniques is extremely time-consuming and labor-intensive. To address this issue, we aimed to quantify synaptic proteins in microglia using flow cytometry. With this approach, we first showed that microglia from the healthy adult mouse brain contain a detectable level of VGLUT1 protein. Next, we found more than two-fold increased VGLUT1 immunoreactivity in microglia from the developing brain (P15) as compared to adult microglia. These data indicate that microglia-mediated synaptic pruning mostly occurs during the brain developmental period. We then quantified the VGLUT1 staining in microglia in two transgenic models characterized by pathological microglia-mediated synaptic pruning. In the 5xFAD mouse model of Alzheimer's disease (AD) microglia exhibited a significant increase in VGLUT1 immunoreactivity before the onset of amyloid pathology. Moreover, conditional deletion of TDP-43 in microglia, which causes a hyper-phagocytic phenotype associated with synaptic loss, also resulted in increased VGLUT1 immunoreactivity within microglia. This work provides a quantitative assessment of synaptic proteins in microglia, under homeostasis, and in mouse models of disease.

18.
Cell Immunol ; 349: 104048, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32014271

RESUMEN

NFAT2 activity was shown to be of critical importance in B cell receptor signaling, development and proliferation; however its role in B cell development in the periphery is still not completely understood. We confirmed that NFAT2 deletion leads to impaired B1 B cell development, supported by our finding of limited B1 progenitors in the bone marrow and spleen of NFAT2 deficient mice. Moreover, we show for the first time that loss of NFAT2 increases immature B cells in particular transitional T2 and T3 as well as mature follicular B cells while marginal zone B cells are decreased. We further demonstrate that NFAT2 regulates the expression of B220, CD23, CD38, IgM/IgD and ZAP70 in murine B cells. In vivo analyses revealed decreased proliferation and increased apoptosis of NFAT2 deficient B cells. In summary, this study provides an extensive analysis of the role of NFAT2 in peripheral B lymphocyte development.


Asunto(s)
Subgrupos de Linfocitos B/citología , Linfopoyesis/fisiología , Factores de Transcripción NFATC/deficiencia , Animales , Antígenos de Diferenciación de Linfocitos B/análisis , Subgrupos de Linfocitos B/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Letales , Heterocigoto , Inmunoglobulina D/biosíntesis , Inmunoglobulina D/genética , Inmunoglobulina M/biosíntesis , Inmunoglobulina M/genética , Antígenos Comunes de Leucocito/biosíntesis , Antígenos Comunes de Leucocito/genética , Activación de Linfocitos , Tejido Linfoide/crecimiento & desarrollo , Tejido Linfoide/patología , Linfopoyesis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/fisiología , Especificidad de Órganos , Organismos Libres de Patógenos Específicos
19.
Front Cell Neurosci ; 13: 484, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824264

RESUMEN

Voa protein is a subunit of V-ATPase proton pump which is essential to acidify intracellular organelles including synaptic vesicles. Voa1 is one of the four isoforms of Voa family with strong expression in neurons. Our present study was aimed to examine the role of Voa1 protein in mammalian brain neurons. To circumvent embryonic lethality, we generated conditional Voa1 knockout mice in which Voa1 was selectively deleted from forebrain pyramidal neurons. We performed experiments in the Voa1 knockout mice of ages 5-6 months to assess the persistent effects of Voa1 deletion. We found that the Voa1 knockout mice exhibited poor performance in the Morris water maze test compared to control mice. In addition, synaptic field potentials of the hippocampal CA1 region were greatly diminished in the Voa1 knockout mice when examined in brain slices in vitro. Furthermore, brain histological experiments showed severe degeneration of dorsal hippocampal CA1 neurons while CA3 neurons were largely preserved. The CA1 neurodegeneration was associated with general brain atrophy as overall hemispheric areas were reduced in the Voa1 cKO mice. Despite the CA1 degeneration and dysfunction, electroencephalographic recordings from the hippocampal CA3 area revealed aberrant spikes and non-convulsive discharges in the Voa1 knockout mice but not in control mice. These hippocampal spikes were suppressed by single intra-peritoneal injection of diazepam which is a benzodiazepine GABAA receptor enhancer. Together these results suggest that Voa1 related activities are essential for the survival of the targeted neurons in the dorsal hippocampal CA1 as well as other forebrain areas. We postulate that the Voa1 knockout mice may serve as a valuable model for further investigation of V-ATPase dysfunction related neuronal degeneration and functional abnormalities in forebrain areas particularly the hippocampus.

20.
Elife ; 82019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31663848

RESUMEN

CRISPR/Cas systems are widely used to knock out genes by inducing indel mutations, which are prone to genetic compensation. Complex genome modifications such as knockin (KI) might bypass compensation, though difficult to practice due to low efficiency. Moreover, no 'two-in-one' KI strategy combining conditional knockout (CKO) with fluorescent gene-labeling or further allele-labeling has been reported. Here, we developed a dual-cassette-donor strategy and achieved one-step and efficient generation of dual-function KI alleles at tbx5a and kctd10 loci in zebrafish via targeted insertion. These alleles display fluorescent gene-tagging and CKO effects before and after Cre induction, respectively. By introducing a second fluorescent reporter, geno-tagging effects were achieved at tbx5a and sox10 loci, exhibiting CKO coupled with fluorescent reporter switch upon Cre induction, enabling tracing of three distinct genotypes. We found that LiCl purification of gRNA is critical for highly efficient KI, and preselection of founders allows the efficient germline recovery of KI events.


Asunto(s)
Alelos , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Coloración y Etiquetado/métodos , Pez Cebra/genética , Animales , Genotipo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA